因子分析的目的

 我来答
会哭的礼物17
2022-10-08 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6404
采纳率:100%
帮助的人:36.6万
展开全部
问题一:因子分析到底有什么用处? 问题:大家觉得因子分析到底有什幺用处呢?把原来很多个影响因素归纳成几个影响因子,如果不继续做回归或者聚类的话,光做因子分析有价值吗?答复:因子分析是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。在你对问题系统结构不了解时候,因子分析可以根据数据内在逻辑性,把它归并成几个公因子,每个公因子分别代表空间的一个维度,如果经过正交或斜 交旋转的话,各个维度之间可以认为是不相关的,这些公因子能够相对完整地刻画对象的体系维度,最起码累计方差贡献率大于85%的话,就基本能够保证重要信 息不丢失了。一句话,你如果对研究对象到底应该分为几个维度不清楚的话,用因子分析可以通过数据内在逻辑告诉你。但如果你对研究对象体系比较清楚的话,那你直接确定维度,通过AHP计算出权重,就能够把系统表述清楚了。但这里面有巨大问题,单纯通过数据内 在逻辑来判断维度,常常是错误的,而主观判断其实更加科学,并非象统计学宣称的,数据说话才有发言权。真正有发言权的,是你对问题的经验认识程度。人们为 了避免被人嘲笑主观判断的失误,而越来越选择了统计分析,实际上,他们并不清楚,单纯用统计分析来做判断,才是最愚蠢的。只有主客观结合起来,才是相对科 学的,两者矛盾的时候,应该深入研究矛盾的根源,搞不清楚的话,我认为指标体系评价法要远比统计分析准确的多。而变量之所以能分布在不同的因子内,则是由 于其方差波动性大小和变量之间的相关性决定的,波动性越大,越排在前面的公因子中,各个公因子之间的变量是不相关的,而每个公因子之间的变量是相关的。因 子分析认为那些数据波动大的变量对对象影响作用更大,它们排在公因子的前列,这样单纯从数据逻辑来判断的准则你认为对吗?我想,如果管理和社会科学都这幺 认为的话,那错误将大大增加了。上面想法是我这两年做课题的体会,没有在任何一本书上看过相关说法,也许说的不对,这是我个人看法。如果让我选择的话,我 宁愿用指标体系评价法,体系几个维度事先就清楚,最多先用因子分析算算,看看数据波动性如何,到底能确定几个维度,只起辅助作用。研究者就是专家,指标体 系的维度由主观来做判断,这主要来自经验判断,而不是由数据判断,我认为其实更科学。当然,如果你对问题一无所知,那指标体系评价法用AHP来做的话,错 误很可能更多。我以前就强烈批判过AHP。说到底,没有一种评价方法是好的,说明问题就好。问题:那能对LISREL进行类似于因子分析的探索性因素分析了解吗?能给点评价么?3x答复:下面是探索性分析的原理:传统上所谈的因素分析)factor *** ysis)指的是探索性因素分析)exploratory factor *** ysis),它的目的是在承认有测量误差的情形下,尝试用少数的因素)factors)以解释许多变项间的相关关系。随着统计理论及电脑计算上的进展,目前因素分析的方法可分成探索性因素分析)exploratory factor *** ysis,EFA)及验证性因素分析)confirmatory factor *** ysis,CFA),这两类分析之间的差别在于研究者对研究变项间因素结构的了解程度不同。如果研究者对资料内所含的因素性质,结构及个数不是很 清楚,则可使用探索性因素分析试图找出能解释资料变项间相关关系的少数几个重要因素。若研究者从过去文献中的理论及自己的研究经验,而对资料间因素之数 目,结构有一定程度的了解及假设,则可使用验证性因素分析来验证该假设是否能解......>>

问题二:请教SPSS高人,主成份分析和因子分析有什么不同?做主成分分析目的是什么?谢谢 主成分分析可以理解为一种数据的处理理论,也可以理解为一种应用方法。而因子分析则可以理解为一种应用方法,因为做因子分析采用的比较多的就是用主成分分析的方法来浓缩因子。所以
其实所谓的区别只不过是在学科研究当中存在的,因为同属于统计学的理论,所以一定要找出两者的区别来。但是如果你只是应用的话,那就没必要考虑两者有什么区别。
况且spss使用因子分析非常方便 就可以得出各因子的得分,但是如果你非要用主成分分析方法,则需要自己手动再根据spss输出的某些因子分析结果来计算主成分得分。
做主成分分析或者说因子分析的目的 是为了浓缩众多变量,使之在后续的计算中更加简介。比如原来有80多个变量,如果直接进行综合排名要考虑每个变量进行综合,所以此时通过主成分分析,可以将原来的80多个变量浓缩成3~5个代替原来众多变量的新变量 即所谓的主成分或主因子。这样后续的计算就很简洁了

问题三:探索性因子分析的目的意义有哪些 看你对变量理论的分组符不符合实际的情况,是确保模型合理性的前提

问题四:请问 做相关分析前,一定要做因子分析吗?因子分析的目的是什么? 谢谢! 主成分分析和因子分析的区别 :jok:
1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成
个变量的线性组合。
2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之
间的协方差。
3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假
设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同
因子和特殊因子之间也不相关。
4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分
一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。
5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特
征值大于1的因子进入分析),而指
定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量
就有几个主成分。
和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有
优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于
使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个
新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主
成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前
,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分
析一般很少单独使用:a,了解数据。(screening the data),b,和cluster *** ysis一
起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可
能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回
归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性

在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的
对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的

问题五:因子分析中正交旋转的原因和目的是什么? 因子分析中正交旋转的原因和目的是:为了更突出各个因子的典型代表变量是谁,这样更容易发觉因子的作用。
因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子,以较少的几个因子反映原资料的大部分信息。运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力运用这种研究技术,我们还可以为市场细分做前期分析。

问题六:因子分析法的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。3. 因子旋转建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。4.因子得分因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。设公共因子F由变量x表示的线性组合为:Fj = uj1 xj1+ uj2 xj2+…+ujp *** j=1,2,…,m该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。⑴回归估计法F = X b = X (X ¢X)-1A¢ = XR-1A......>>

问题七:主成分分析和因子分析有什么区别? 因子分析与主成分分析的异同点:
都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量
公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大
主成分分析仅仅是变量变换,而因子分析需要构造因子模型。
主成分分析:原始变量的线性组合表示新的综合变量,即主成分;
因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。

问题八:在因子分析中计算变量共同度的目的是可以反映什么 所提供公因子可以解释原始变量的方差程度。

问题九:因子分析常用来解决什么问题,目标是什么 主要是用来寻找指标变了共同的潜变量或称公因子,然后用公因子进行后续的各项分析,达到降维的目的。(南心网为您解决SPSS因子分析问题)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海宇玫博生物科技有限公司
2023-08-27 广告
作为上海宇玫博生物科技有限公司的工作人员,我认为外泌体组分中的miRNA在病变细胞中的应用主要包括以下方面:1. 疾病诊断:某些特定的miRNA表达水平可以反映病变细胞的状态,因此可以用于疾病的早期诊断和分类。2. 药物研发:miRNA可以... 点击进入详情页
本回答由上海宇玫博生物科技有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式