在正方形ABCD中,P为BC边上一点,Q为CD边上一点,若PQ=BP+DQ,求角PAQ的度数?
1个回答
展开全部
假设正方形边长为1,BP=a,DQ=b,则PQ=a+b,0〈=a〈=1,0〈=b〈=1
因为PQC是直角三角形,
所以PC的平方+QC的平方=PQ的平方
既(1-a)的平方+(1-b)的平方=(a+b)的平方
既(1+a)*(1+b)=2
又因为0〈=a〈=1,0〈=b〈=1
所以a=1,b=0或a=0或b=1
所以角PAQ=90度或者角PAQ=45度,1,在正方形ABCD中,P为BC边上一点,Q为CD边上一点,若PQ=BP+DQ,求角PAQ的度数
急,请 快 点
因为PQC是直角三角形,
所以PC的平方+QC的平方=PQ的平方
既(1-a)的平方+(1-b)的平方=(a+b)的平方
既(1+a)*(1+b)=2
又因为0〈=a〈=1,0〈=b〈=1
所以a=1,b=0或a=0或b=1
所以角PAQ=90度或者角PAQ=45度,1,在正方形ABCD中,P为BC边上一点,Q为CD边上一点,若PQ=BP+DQ,求角PAQ的度数
急,请 快 点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询