已知函数f(x)=2cosx*sin(x+π/3)-√3sin^2x+sinx*cosx
(1)求函数f(x)的单调递减区间(2)将函数f(x)的图像按向量a=(m,0)平移后得到g(x)的图像,求使函数g(x)为偶函数的m的最小正值速求,要详细答案...
(1)求函数f(x)的单调递减区间
(2)将函数f(x)的图像按向量a=(m,0)平移后得到g(x)的图像,求使函数g(x)为偶函数的m的最小正值
速求,要详细答案 展开
(2)将函数f(x)的图像按向量a=(m,0)平移后得到g(x)的图像,求使函数g(x)为偶函数的m的最小正值
速求,要详细答案 展开
1个回答
展开全部
1.
f(x)=2cosx*sin(x+π/3)-√3sin^2x+sinx*cosx
= 2cosx*sin(x+π/3)- 2sinx*[(√3/2)sinx-(1/2)cosx]
= 2cosx*sin(x+π/3)- 2sinx*[sin(π/3)sinx-cos(π/3)cosx)]
= 2cosx*sin(x+π/3)+ 2sinxcos(x+π/3)
= 2sin(2x+π/3)
f(x)的单调区间
2kπ - π/2 <= 2x+π/3 < 2kπ + π/2 单调增
(2k+1)π - π/2 <= 2x+π/3 < (2k+1)π + π/2 单调减
k= 0 , +/-1, +/- 2, +/- 3 ......
=>
[2kπ - π/2 - π/3]/2 <= x < [2kπ + π/2 - π/3]/2
[(2k+1)π - π/2 -π/3]/2 <= x < [(2k+1)π + π/2 - π/3]/2
2.
f(x) 平移 a(m,0) 即沿x 轴向正方向移动
g(x)=f(x-m) = 2sin[2(x-m)+π/3]
g(x) 为 偶函数 即 g(x)= g(-x)
=>
2sin[2(x-m)+π/3] = 2sin[2(-x-m)+π/3]
又sin为奇函数
=>
2sin[2(x-m)+π/3] = -2sin{-[2(-x-m)+π/3]}
=>
2sin[2(x-m)+π/3] = 2sin{[2(x+m)-π/3]}
=>
2(x-m) + π/3 + 2kπ = 2(x+m)-π/3
=>
4m= 2π/3 + 2kπ
m=π/6 取最小正值(k=0)
f(x)=2cosx*sin(x+π/3)-√3sin^2x+sinx*cosx
= 2cosx*sin(x+π/3)- 2sinx*[(√3/2)sinx-(1/2)cosx]
= 2cosx*sin(x+π/3)- 2sinx*[sin(π/3)sinx-cos(π/3)cosx)]
= 2cosx*sin(x+π/3)+ 2sinxcos(x+π/3)
= 2sin(2x+π/3)
f(x)的单调区间
2kπ - π/2 <= 2x+π/3 < 2kπ + π/2 单调增
(2k+1)π - π/2 <= 2x+π/3 < (2k+1)π + π/2 单调减
k= 0 , +/-1, +/- 2, +/- 3 ......
=>
[2kπ - π/2 - π/3]/2 <= x < [2kπ + π/2 - π/3]/2
[(2k+1)π - π/2 -π/3]/2 <= x < [(2k+1)π + π/2 - π/3]/2
2.
f(x) 平移 a(m,0) 即沿x 轴向正方向移动
g(x)=f(x-m) = 2sin[2(x-m)+π/3]
g(x) 为 偶函数 即 g(x)= g(-x)
=>
2sin[2(x-m)+π/3] = 2sin[2(-x-m)+π/3]
又sin为奇函数
=>
2sin[2(x-m)+π/3] = -2sin{-[2(-x-m)+π/3]}
=>
2sin[2(x-m)+π/3] = 2sin{[2(x+m)-π/3]}
=>
2(x-m) + π/3 + 2kπ = 2(x+m)-π/3
=>
4m= 2π/3 + 2kπ
m=π/6 取最小正值(k=0)
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询