初中因式分解的方法与技巧
初中因式分解的方法与技巧:
一,提公因式法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x2 -2x -x
x²-2x -x=x(x -2x-1)
二,应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。如,和的平方、差的平方
例2、分解因式a² +4ab+4b²
a²+4ab+4b² =(a+2b)²
三,分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m2+5n-mn-5m
m2+5n-mn-5m= m2-5m-mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
四,十字相乘法(经常使用)
对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x²-19x-6
分析:1 -3
7 2
2-21=-19
7x²-19x-6=(7x+2)(x-3)
五,配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x²+3x-40
解x²+3x-40=x²+3x+(9/4) -(9/4) -40
=(x+3/2) ²-(169/4 )
=(x+3/2+13/2)(x+3/2-13/2)
=(x+8)(x-5)