怎样通俗理解函数的极限
1个回答
展开全部
函数的极限通俗理解就是无限逼近,它是一个趋势,一个无限接近的趋势,|F(X)-A|小于一个任意小的常数,所以就是它无限逼近A。
最后的极限值与你逼近点的函数值无关,因为极限值是那个趋势的尽头,所以那一点取什么都没事。
函数极限的求解方法:
1、利用函数的连续性求函数的极限(直接带入即可)。
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。
2、利用无穷小的性质求函数的极限。
性质1:有界函数与无穷小的乘积是无穷小。
性质2:常数与无穷小的乘积是无穷小。
性质3:有限个无穷小相加、相减及相乘仍旧无穷小。
3、恒等变形。
当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:
(1)因式分解,通过约分使分母不会为零。
(2)若分母出现根号,可以配一个因子使根号去除。
(3)以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方(通常会用到这个定理:无穷大的倒数为无穷小)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |