二阶常系数线性微分方程怎么解

 我来答
教育小百科达人
2022-12-10 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:466万
展开全部

较常用的几个:

1、Ay''+By'+Cy=e^mx 

特解    y=C(x)e^mx

2、Ay''+By'+Cy=a sinx + bcosx    

特解    y=msinx+nsinx

3、Ay''+By'+Cy= mx+n                 

特解    y=ax

二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。

若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

扩展资料:

通解=非齐次方程特解+齐次方程通解

对二阶常系数线性非齐次微分方程形式ay''+by'+cy=p(x)

 的特解y*具有形式

y*= 

其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2.

将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。

多项式法:

设常系数线性微分方程y''+py'+qy =pm

 (x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) ,则方程可化为:

F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式。

升阶法:

设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得

y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……

y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!

y^(n+2)+py^(n+1)+qy^(n)=a0n!

令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一个特解y(x)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式