什么是用来评估神经网络的计算模型
损失函数是用来评估神经网络的计算模型。
你自行搭建的神经网络模型,权值和阈值仍然是要通过训练得到的。初始化后,将BP算法加到这个模型上,不断调整权值。可以先用神经网络工具箱训练好一个网络,再将权值和阈值导出。 net.IW{1,1}=W1; net.LW{2,1}=W2; net.b{1}=B1; net.b{2}=B2; 注意要反过来,如果是导出的话。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型.这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的.
神经网络的应用:
应用
在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等.
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路.我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异.
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点.主要的研究工作集中在以下几个方面:
生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理.