正定矩阵的伴随矩阵是正定矩阵吗
1个回答
展开全部
是的。
在线性代数里,正定矩阵 (positive definite matrix) 有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。
在线性代数里,正定矩阵 (positive definite matrix) 有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。
扩展资料
正定矩阵:
广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。
例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)
狭义定义:一个n阶的实对称矩阵M是正定的的'条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。
正定矩阵有以下性质:
正定矩阵的行列式恒为正;
实对称矩阵A正定当且仅当A与单位矩阵合同;
若A是正定矩阵,则A的逆矩阵也是正定矩阵;
两个正定矩阵的和是正定矩阵;
正实数与正定矩阵的乘积是正定矩阵。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询