
求函数y=cos4x的最小正周期?
1个回答
展开全部
函数y=cos4x的最小正周期:0.5π
正弦余弦周期都是2π
所以y=cos4x的最小正周期计算过程是:2π除以4=0.5π
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。
y=Asin(ωx+φ), T=2π/ω(其中ω必须>0)
扩展资料:
求函数y=|sinx|+|cosx|的最小正周期.
解:∵ =|sinx|+|cosx|
=|-sinx|+|cosx|
=|cos(x+π/2)|+|sin(x+π/2)|
=|sin(x+π/2)|+|cos(x+π/2)|
=f(x+π/2)
对定义域内的每一个x,当x增加到x+π/2时,函数值重复出现,因此函数的最小正周期是π/2.(如果f(x+T)=f(x),那么T叫做f(x)的周期)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询