求一条通过原点,且在任意点处切线的斜率为2x+y的曲线方程.
1个回答
展开全部
由题意,得
y'=2x+y
y(0)=0
j解y‘=2x+y
y’-y=2x
y=e^∫dx[∫2xe^(-∫dx)dx+c]
=e^x(-2xe^(-x)-2e^(-x)+c)
代入x=0,y=0,得
0=-2+c
c=2
所以
方程为
y=e^x【-2xe^(-x)-2e^(-x)+2】
y'=2x+y
y(0)=0
j解y‘=2x+y
y’-y=2x
y=e^∫dx[∫2xe^(-∫dx)dx+c]
=e^x(-2xe^(-x)-2e^(-x)+c)
代入x=0,y=0,得
0=-2+c
c=2
所以
方程为
y=e^x【-2xe^(-x)-2e^(-x)+2】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询