矩阵与行列式的区别是什么?

 我来答
妖感肉灵10
2022-12-21 · TA获得超过6.3万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

1、定义不同

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。

2、表达式不同

行列式:n阶行列式

是由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和。

矩阵:由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:

这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。

3、性质不同

行列式:行列式A中某行(或列)用同一数k乘,其结果等于kA。

行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

矩阵:对称矩阵A正定的充分必要条件是A的n个特征值全是正数。

对称矩阵A正定的充分必要条件是A合同于单位矩阵E。

对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU

对称矩阵A正定,则A的主对角线元素均为正数。

对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。

参考资料:百度百科-行列式

参考资料:百度百科-矩阵

泰科博思
2024-12-27 广告
CASTEP是一款基于第一性原理计算方法的材料模拟软件,其优势包括:1.高精度。CASTEP使用密度泛函理论(DFT)进行第一性原理计算。这种基于波函数的方法不依赖于实验数据,可以获得非常高的准确性。2.广泛适用性。CASTEP适用于多种材... 点击进入详情页
本回答由泰科博思提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式