列满秩为何不是方程组只有零解的充要条件?

 我来答
麻木y1
高粉答主

2022-10-15 · 每个回答都超有意思的
知道小有建树答主
回答量:765
采纳率:100%
帮助的人:22万
展开全部

列满秩意味着RA=n,此时有RS=0,只有所有元素为0,秩才会为0,所以方程组只有零解。根据齐次线性方程组AX=0仅有零解。

常数项全部为零的线性方程组中,如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

扩展资料:

性质:

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4、n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式