傅里叶变换的11个性质公式
展开全部
傅里叶变换是:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dt f(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω 令:f(t)=δ(t),那么:∫(∞,-∞) δ(t)e^(-iωt)dt = 1 而上式的反变换。
傅立叶变换的主要作用就是让函数在时域和频域可以相互转化,最显而易见的应用就是:当输入函数和单位冲激响应函数都被转化为频域函数后,两个频域函数直接做乘法,就可以得到输出的频域函数,最后再反变换回时域,就可以得到输出的时域函数。
傅立叶变换:
傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分,所以分析一个复杂的信号只需经过傅里叶变换后可以轻易的看出其频率和相位、幅度分量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |