x=2(t-sint) y=3(1-cost)求d^2y/dx^2【如图】求解 谢谢!
1个回答
展开全部
x=2(t-sint)
dx/dt =2(1-cost)
y=3(1-cost)
dy/dt =3sint
dy/dx =(dy/dt)/(dx/dt) =(3/2)[sint/(1-cost)]
d/dx(dy/dx)
=(3/2){ [(1-cost)cost - sint.(sint) ]/(1-cost)^2 }
=(3/2) [(cost -1)/(1-cost)^2 ]
=-(3/2) [1/(1-cost)]
d^2y/dx^2
=d/dx(dy/dx) /(dx/dt)
=-(3/2) [1/(1-cost)] /[2(1-cost)]
=-(3/4) [1/(1-cost)^2]
dx/dt =2(1-cost)
y=3(1-cost)
dy/dt =3sint
dy/dx =(dy/dt)/(dx/dt) =(3/2)[sint/(1-cost)]
d/dx(dy/dx)
=(3/2){ [(1-cost)cost - sint.(sint) ]/(1-cost)^2 }
=(3/2) [(cost -1)/(1-cost)^2 ]
=-(3/2) [1/(1-cost)]
d^2y/dx^2
=d/dx(dy/dx) /(dx/dt)
=-(3/2) [1/(1-cost)] /[2(1-cost)]
=-(3/4) [1/(1-cost)^2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询