全栈和python的区别
2023-04-03 · 百度认证:重庆猪八戒网络有限公司官方账号
首先我们来看看Python在公司的一些基础应用:
1、验证算法:就是对公司一些常见设计算法或者公式的验证,公式代码化。
2、快速开发:这个大家应该都比较熟悉,快速开发,就是用成熟框架,更少的代码来开发网站,Python在网站前后台有大量的成熟的框架,如django,flask,bottle,tornado,flask和django的使用较多,国内用Python开发的网站有:知乎、豆瓣、扇贝、腾讯、阿里巴巴;
3、测试运维:用python实现的测试工具及过程,包含服务器端、客户端、web、andriod、client端的自动化测试,自动化性能测试的执行、监控和分析,常用seleniumappium等
框架。做运维同学应该清楚,在Linux运维工作中日常操作涵盖了监控,部署,网络配置,日志分析,安全检测等等许许多多的方面,无所不包。python可以写很多的脚本,把“操作”这个行为做到极致。与此同时,python在服务器管理工具上非常丰富,配置管理(saltstack)批量执行(fabric,saltstack)监控(Zenoss,nagios插件)虚拟化管理(python-libvirt)进程管理(supervisor)云计算(openstack)......还有大部分系统C库都有python绑定。
4、数据分析:Python有三大神器:numpy,scipy,matplotlib,其中numpy很多底层使用C语言实现的,所以速度很快,用它参加各种数学建模大赛,完全可以替代r语言和MATLAB。spark,Hadoop都开了Python的接口,所以使用Python做大数据的maprece也非常简单,加上py对数据库支持都很好,或者类似sqlalchemy的orm也非常强大好用。
特别是目前,Python在云基础设施,DevOps,大数据处理等领域都是炙手可热的语言。
领域————————流行语言
云基础设施————Python,Java,Go
DevOps——Python,Shell,Ruby,Go
网络爬虫————Python,PHP,C++
数据处理Python,R,Scala
云平台分为私有云和公有云。私有云平台如日中天的OpenStack,就是Python写的。
正是因为应用开发工程师、运维工程师、数据科学家都喜欢Python,才使得Python成为大数据系统的全栈式开发语言。
对于开发工程师而言,Python的优雅和简洁无疑是最大的吸引力,在Python交互式环境中,执行importthis,Python社区一直非常有活力,Python的软件包增长速度一直比较稳定,同时软件包的质量也相对较高。
对于运维工程师而言,Python的最大优势在于,几乎所有Linux发行版都内置了Python解释器。Shell虽然功能强大,但毕竟语法不够优雅,写比较复杂的任务会很痛苦。用Python替代Shell,做一些复杂的任务,对运维人员来说,是一次解放。
对于数据科学家而言,Python简单又不失强大。和C/C++相比,不用做很多的底层工作,可以快速进行模型验证;和Java相比,Python语法简洁,表达能力强,同样的工作只需要1/3代码;和Matlab,Octave相比,Python的工程成熟度更高。不止一个编程大牛表达过,Python是最适合作为大学计算机科学编程课程使用的语言——MIT的计算机入门课程就是使用的Python——因为Python能够让人学到编程最重要的东西——如何解决问题。
顺便提一句,微软高调宣布提高Python在Windows上的编程体验,包括VisualStudio支持Python,优化Python的C扩展在Windows上的编译等等。脑补下未来Python作为Windows默认组件的场景。