我的数学学习情况汇报 作文
1.向新的同学老师介绍自己数学学习情况,交流自己对数学的感悟2.表达自己对初中学习对老师的期望建议等3.表达自己对数学学习的构想4.600字作文(我的数学学习还可以,就是...
1.向新的同学老师介绍自己数学学习情况,交流自己对数学的感悟
2.表达自己对初中学习对老师的期望建议等
3.表达自己对数学学习的构想
4.600字作文(我的数学学习还可以,就是空间想象能力不太好,数学成绩很好) 展开
2.表达自己对初中学习对老师的期望建议等
3.表达自己对数学学习的构想
4.600字作文(我的数学学习还可以,就是空间想象能力不太好,数学成绩很好) 展开
5个回答
展开全部
我是一名自认为数学学习成绩优秀的学生,在学校里无论大小考试我都能考95分以上,同学们都说我在数学学习方面有天份,数学老师也很喜欢我,经常让我帮她做些事情。做所有的事情我都能快乐地去面对,反正是要做,干嘛不快乐地去做呢?当然我也有不足,比如说期末考试的前一天晚上,同学们都在干什么?当然,都在家认认真真地复习了!我呢?刚刚从妹妹家里玩了一趟回来,现正在看着电视呢,当然是不会考好的。然后就是我的空间想象方面不行,希望老师能够多重视 。
在这我有一套好的学习方法:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
我希望未来的老师是一个能学习娱乐两手抓的老师,课堂上不仅仅有知识的给予,还可以玩一下,让课堂充满欢声笑语。
在这我有一套好的学习方法:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
我希望未来的老师是一个能学习娱乐两手抓的老师,课堂上不仅仅有知识的给予,还可以玩一下,让课堂充满欢声笑语。
展开全部
我的发现
同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。
如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗?
同样的发现我还有:一个数乘1.5只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了!
我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。
这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。
同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!
谈谈对零的认识
零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多。在数学中零非常特殊,不管做什么题,你应该考虑零。
在几何中,“0”经常被作为记号。
“0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数。“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数。零作被除数,不管除以什么数(“0”除外)都得零。
往往我们会忽视零,但它却起着重要的责任。如,问等于几?有些人就不能联想到“0”。在数数时,有人就会忘掉零。如:不大于5不小于-5的整数有几个?有人就会定有8个。其实还有0。如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数)。
零在生活中更量五彩斑斓。在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴。但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了。在比赛中,谁都不希望得到“0”。
零是丰富的。我认为零在题中是陷井,大家以后做题时应考虑零。零在不同的场合也能使人的情绪改变。它是美妙而又丰富的。
对0的认识
0是一个奇妙的数字,又是一个中学生经常遇见的“老朋友”了,计算,概念,都要遇见。
首先,0表示什么也没有,简直可称得上是数字里面的“沙漠”,0也是一个奇怪的数字,放在体积、面积、重量、速度、路程等所有单位里面,都表示没有,以表示时间、一个人的年龄、赛跑的刚开始、起点。
在数学王国数字库自然数里面,以有0的身影,它当然是最小的。没有0,便没有一毓的自然数,因为0是自然数的起点。
在计算里,0乘以任何一个数,包括负数、分数、0都,0的绝对值也等于0,在有理数中,它的绝对值是最小的,0除以任何一个数都,0加上一个数,仍得那个数,如:0+1=1,0+1.8375=1.8375。0减去一个数,得那个数的相反数,如:0-1=-1,0-87=-87。
在数轴中,0为原点,也为边界线,把正负两大数分开,0为什么奇妙呢?因为0既不是正数,也不是负数,它只是一个整数,当0和正数在一起时,叫非负数,和负数在一起时,叫非正数,数轴上,0又为我们判断正负数大小时提供了极大的方便,右边为正数,左边为负数,右边的数始终比左边大,说明正数大于负数,0大于负数,却小于正数。
在几何中,0度角表示一条射线,它并没有角,也没有度数,0平方米,表示没有面积,0米长,表示没有高度。0斤重,表示没有质量,0立方米,表示没有体积。
在地形中,0表示海平面,0以上表示高出海平面,0以下表示低于海平面,中国新疆有一155米的盆地,它是低于海平面155米,中国西藏有8848米的珠峰,它高于海平面8848米。
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气
同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。
如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗?
同样的发现我还有:一个数乘1.5只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了!
我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。
这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。
同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!
谈谈对零的认识
零看上去很单调,就是没有,其实它非常地丰富,它隐藏了许多。在数学中零非常特殊,不管做什么题,你应该考虑零。
在几何中,“0”经常被作为记号。
“0”的特殊源于在一些概念或题里,比如每个有理数都有倒数,“0”却没有,有理数分为正数、负数。“0”,一个数就分为一类,这不特殊吗?在除数里,只有零不能作除数。零作被除数,不管除以什么数(“0”除外)都得零。
往往我们会忽视零,但它却起着重要的责任。如,问等于几?有些人就不能联想到“0”。在数数时,有人就会忘掉零。如:不大于5不小于-5的整数有几个?有人就会定有8个。其实还有0。如:有哪些数的绝对值不大于本身?那就是正数和零(也可以称之为非负数)。
零在生活中更量五彩斑斓。在期末后开家长会,老师那里登记的犯错本给家长看时,我们都希望自己的那一格记着“0”,这表示我们没有犯过错,家长高兴,我们高兴。但是在卷子上我们都不希望看到这个数或接近这个数的整正数,否则回家的日子就难过了。在比赛中,谁都不希望得到“0”。
零是丰富的。我认为零在题中是陷井,大家以后做题时应考虑零。零在不同的场合也能使人的情绪改变。它是美妙而又丰富的。
对0的认识
0是一个奇妙的数字,又是一个中学生经常遇见的“老朋友”了,计算,概念,都要遇见。
首先,0表示什么也没有,简直可称得上是数字里面的“沙漠”,0也是一个奇怪的数字,放在体积、面积、重量、速度、路程等所有单位里面,都表示没有,以表示时间、一个人的年龄、赛跑的刚开始、起点。
在数学王国数字库自然数里面,以有0的身影,它当然是最小的。没有0,便没有一毓的自然数,因为0是自然数的起点。
在计算里,0乘以任何一个数,包括负数、分数、0都,0的绝对值也等于0,在有理数中,它的绝对值是最小的,0除以任何一个数都,0加上一个数,仍得那个数,如:0+1=1,0+1.8375=1.8375。0减去一个数,得那个数的相反数,如:0-1=-1,0-87=-87。
在数轴中,0为原点,也为边界线,把正负两大数分开,0为什么奇妙呢?因为0既不是正数,也不是负数,它只是一个整数,当0和正数在一起时,叫非负数,和负数在一起时,叫非正数,数轴上,0又为我们判断正负数大小时提供了极大的方便,右边为正数,左边为负数,右边的数始终比左边大,说明正数大于负数,0大于负数,却小于正数。
在几何中,0度角表示一条射线,它并没有角,也没有度数,0平方米,表示没有面积,0米长,表示没有高度。0斤重,表示没有质量,0立方米,表示没有体积。
在地形中,0表示海平面,0以上表示高出海平面,0以下表示低于海平面,中国新疆有一155米的盆地,它是低于海平面155米,中国西藏有8848米的珠峰,它高于海平面8848米。
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以列出提纲,然后根据学习的情况,时间,解题的思路,举例题等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先占个位,等下写好给你。
你读小学还是初中?几年级啊
你读小学还是初中?几年级啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询