卷积神经网络结构由哪几部分组成

 我来答
Mmm毛毛毛9
2023-05-20 · 超过122用户关注了TA
知道大有可为答主
回答量:2399
采纳率:0%
帮助的人:33.6万
展开全部

卷积神经网络主要结构有:卷积层、池化层、和全连接层组词。

一、卷积层

卷积核是一系列的滤波器,用来提取某一种特征我们用它来处理一个图片,当图像特征与过滤器表示的特征相似时,卷积操作可以得到一个比较大的值。当图像特征与过滤器不相似时,卷积操作可以得到一个比较小的值,实际上,卷积的结果特征映射图显示的是对应卷积核所代表的特征在原始特征图上的分布情况。

每个滤波器在空间上(宽度和高度)都比较小,但是深度和输入数据保持一致(特征图的通道数),当卷积核在原图像滑动时,会生成一个二维激活图,激活图上每个空间位置代表原图像对该卷积核的反应。每个卷积层,会有一整个集合的卷积核,有多少个卷积核,输出就有多少个通道。每个卷积核生成一个特征图,这些特征图堆叠起来组成整个输出结果。

卷积核体现了参数共享和局部连接的模式。每个卷积核的大小代表了一个感受野的大小。卷积后的特征图大小为(W-F+2*P)/s+1 ;P 为填充 s 为步长。

二、池化层

池化层本质上是下采样,利用图像局部相关性的原理(认为最大值或者均值代表了这个局部的特征),对图像进行子抽样,可以减少数据处理量同时保留有用信息。这里池化有平均池化,L2范式池化,最大池化,经过实践,最大池化的效果要好于平均池化(平均池化一般放在卷积神经网络的最后一层),最大池化有利于保存纹理信息。

平均池化有利于保存背景信息。实际上(因为信息损失的原因)我们可以看到,通过在卷积时使用更大的步长也可以缩小特征映射的尺寸,并不一定要用池化,有很多人不建议使用池化层。32*32在5*5卷积核步长为1下可得到28*28。池化操作可以逐渐降低数据体的空间尺寸,这样的话就能减少网络中参数的数量,使得计算资源耗费变少,也能有效控制过拟合。

三、全连接层

通过全连接层将特征图转化为类别输出。全连接层不止一层,在这个过程中为了防止过拟合会引入DropOut。最新研究表明,在进入全连接层之前,使用全局平均池化可以有效降低过拟合。随着神经网络训练的进行,每个隐层的参数变化使得后一层的输入发生变化,从而每一批的训练数据的分布也随之改变,致使网络在每次迭代中都需要拟合不同的数据分布,增大训练复杂度和过拟合的风险,只能采用较小的学习率去解决。

通常卷积层后就是BN层加Relu。BN已经是卷积神经网络中的一个标准技术。标准化的过程是可微的,因此可以将BN应用到每一层中做前向和反向传播,同在接在卷积或者全连接层后,非线性层前。它对于不好的初始化有很强的鲁棒性,同时可以加快网络收敛速度。

海德声科贸易(上海)有限公司
2018-03-18 广告
噪声是指音高和音强变化混乱、听起来不谐和的声音。是由发音体不规则的振动产生的,从物理学的角度来看:噪声是发声体做无规则振动时发出的声音,在一定环境中不应有而有的声音。泛指嘈杂、刺耳的声音。从环境保护的角度看:凡是妨碍到人们正常休息、学习和工... 点击进入详情页
本回答由海德声科贸易(上海)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式