循环小数怎样化简分数呢?
纯循环小数化分数。
将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同.
例如:0.111...=1/9、0.12341234...=1234/9999。
混循环小数化分数。
将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同.
例如:0.1234234234…=(1234-1)/9990 0.55889888988898...=(558898-55)/999900。
扩展资料:
简单分数化成小数的情况有三种:
(1)真分数化成小数——分子除以分母;
(2)假分数化成小数——分子除以分母;
(3)带分数化成小数——先将带分数化成假分数,再用假分数的分子除以分母。
分数化小数:
(1)分数化为纯循环小数。一个最简分数能化为纯循环小数的充分必要条件是分母的质因数里没有2和5,其循环节的位数等于能被该最简分数的分母整除的最小的99…9形式的数中9的个数。
(2)分数化为混循环小数。一个最简分数能化为混循环小数的充分必要条件是分母既含有质因数2或5,又含有2和5以外的质因数。化成的混循环小数中,不循环的位数等于分母里的因素2或5的指数中较大的一个;循环节的位数,等于能被分母中异于2,5的因子整除的最小的99…9形式的数中,数9的个数。