几道高二不等式

1、a>0,b>0,ab+(a+b)=1求(1)a+b的最小值(2)ab的最大值2、已知a+b+c=0,求证ab+bc+ca<=0都要有解答过程... 1、a>0,b>0,ab+(a+b)=1 求(1)a+b的最小值(2)ab的最大值
2、已知a+b+c=0,求证ab+bc+ca<=0
都要有解答过程
展开
 我来答
百度网友a411951
2010-07-27 · TA获得超过4631个赞
知道小有建树答主
回答量:1172
采纳率:100%
帮助的人:554万
展开全部
1、因为a+b≥2√(ab),即1-ab≥2√(ab);
设√(ab)=T,得1-T²≥2T,即T²+2T-1≤0,即0≤T≤√(2)-1;
所以ab≤3-2√(2);
所以a+b≥2√(2)-2;
所以a+b的最小值是:2√(2)-2;ab的最大值是:3-2√(2)。

2、带入c=-(a+b)到求证式的ab+c(a+b)=ab-(a+b)²=-(a²+b²+ab)
所以易知-(a²+b²+ab)=-[(a+b/2)²+3*b²/4]≤0。
所以原式得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式