已知函数f(x)=lg[(a^2-1)x^2+(a+1)x+1]
已知函数f(x)=lg[(a^2-1)x^2+(a+1)x+1],若f(x)的值域为R,求实数a的取值范围虽然可以找到很多类似的解答,但我觉得那样解是有误的,这个要求值域...
已知函数f(x)=lg[(a^2-1)x^2+(a+1)x+1],若f(x)的值域为R,求实数a的取值范围
虽然可以找到很多类似的解答,但我觉得那样解是有误的,这个要求值域是R而不是定义域,希望您能给我答案!谢谢 展开
虽然可以找到很多类似的解答,但我觉得那样解是有误的,这个要求值域是R而不是定义域,希望您能给我答案!谢谢 展开
2个回答
展开全部
值域为R则真数取到所有的正数
所以真数最小值小于等于0
因为如果最小大于0,则0和最小值之间的正数取不到
这样值域就不是R
a=1
则真数是2x+1,能取到所有的正数
a=-1
真数=1,不能取到所有的正数
a≠±1
二次函数取到所有的正数
则开口向上
a²-1>0,
a<-1,a>1
最小值小于等于0即和x轴有公共点
所以判别式大于等于0
a²+2a+1-4a²+4>=0
3a²-2a-5<=0
(a+1)(3a-5)<=0
-1<=a<=5/3
所以1<a<=5/3
综上
1≤x≤5/3
所以真数最小值小于等于0
因为如果最小大于0,则0和最小值之间的正数取不到
这样值域就不是R
a=1
则真数是2x+1,能取到所有的正数
a=-1
真数=1,不能取到所有的正数
a≠±1
二次函数取到所有的正数
则开口向上
a²-1>0,
a<-1,a>1
最小值小于等于0即和x轴有公共点
所以判别式大于等于0
a²+2a+1-4a²+4>=0
3a²-2a-5<=0
(a+1)(3a-5)<=0
-1<=a<=5/3
所以1<a<=5/3
综上
1≤x≤5/3
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询