矩阵的特征值

 我来答
美少女阿帅
2023-06-23 · TA获得超过999个赞
知道大有可为答主
回答量:3.8万
采纳率:99%
帮助的人:553万
展开全部

矩阵的特征值如下:

若特征值a的重数是k,则 n-r(A) <= k。

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

注意事项:

广义特征值:如果将特征值推广到复数领域,则广义特征值的形式为:Aν=λBν

其中A和B是矩阵。通过求解方程(A-λB)ν=0得到广义特征值λ,行列式(A-λB)=0(其中行列式为行列式)形成矩阵集合,如A-λB。特征值中的复数名词叫做“铅笔”。

如果B是可逆的,那么原始的关系可以写成一个标准特征值问题。当B是一个不可逆矩阵(不能进行逆变换)时,广义特征值问题应按其原始形式求解。

矩阵特征值的性质:

性质1:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

性质2:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

性质3:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式