展开全部
(3n-1)a(n+1)=[3(n+1)-1]an+1
a(n+1)/[3(n+1)-1]=an/(3n-1)+1/[3(n+1)-1](3n-1)
a(n+1)/[3(n+1)-1]=an/(3n-1)+(1/3)[1/(3n-1)-1/(3n+2)]
[a(n+1)+1/3]/[3(n+1)-1]=[(an+1/3)]/[(3n-1)]
数列{[(an+1/3)]/[1/(3n-1)]}各项均相等。
(an+1/3)/(3n-1)=(a1+1/3)/(3*1-1)=(1+1/3)/2=2/3
3(an+1/3)=2(3n-1)
3an+1=6n-2
3an=6n-3
an=2n-1
a(n+1)/[3(n+1)-1]=an/(3n-1)+1/[3(n+1)-1](3n-1)
a(n+1)/[3(n+1)-1]=an/(3n-1)+(1/3)[1/(3n-1)-1/(3n+2)]
[a(n+1)+1/3]/[3(n+1)-1]=[(an+1/3)]/[(3n-1)]
数列{[(an+1/3)]/[1/(3n-1)]}各项均相等。
(an+1/3)/(3n-1)=(a1+1/3)/(3*1-1)=(1+1/3)/2=2/3
3(an+1/3)=2(3n-1)
3an+1=6n-2
3an=6n-3
an=2n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(3n-1)a(n+1)=(3n+2)an +1
故 (3n-1)[a(n+1)+1/3]=(3n+2)[an+1/3]
构造新数列{bn},令bn=an+1/3,则
(3n-1)b(n+1)=(3n+2)bn
故b(n+1)=[(3n+2)/(3n-1)]bn
={[3(n+1)-1]/(3n-1)}bn
因此,bn={[3n-1]/[3(n-1)-1]}b(n-1)
={[3n-1]/[3(n-1)-1]}{[3(n-1)-1]/[3(n-2)-1]}b(n-2)
={[3n-1]/[3(n-2)-1]}b(n-2)
=...
={[3n-1]/[3*1-1]}b1
=[(3n-1)/2](a1+1/3)
=[(3n-1)/2](1+1/3)
=[2(3n-1)]/3
an=bn-1/3=[2(3n-1)]/3-1/3
故 (3n-1)[a(n+1)+1/3]=(3n+2)[an+1/3]
构造新数列{bn},令bn=an+1/3,则
(3n-1)b(n+1)=(3n+2)bn
故b(n+1)=[(3n+2)/(3n-1)]bn
={[3(n+1)-1]/(3n-1)}bn
因此,bn={[3n-1]/[3(n-1)-1]}b(n-1)
={[3n-1]/[3(n-1)-1]}{[3(n-1)-1]/[3(n-2)-1]}b(n-2)
={[3n-1]/[3(n-2)-1]}b(n-2)
=...
={[3n-1]/[3*1-1]}b1
=[(3n-1)/2](a1+1/3)
=[(3n-1)/2](1+1/3)
=[2(3n-1)]/3
an=bn-1/3=[2(3n-1)]/3-1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |