请教一道定积分题
展开全部
∫1/[x+√(a²-x²)]*dx
设x=asint,则dx=acost*dt
sint=x/a,cost=√(1-x²/a²),t=arcsin(x/a)
原式=∫1/[asint+√(a²-a²sin²t)]*acost*dt
=∫1/(asint+acost)*acost*dt
=∫cost/(sint+cost)*dt
=∫(1/2)[(sint+cost)+(cost-sint)]/(sint+cost)*dt
=∫(1/2)[1+(cost-sint)/(sint+cost)]*dt
=(1/2)∫dt + (1/2)∫(cost-sint)/(sint+cost)*dt
=(1/2)t + (1/2)∫1/(sint+cost)*d(sint+cost)
=(1/2)t + (1/2)ln|sint+cost| + C
=(1/2)arcsin(x/a) + (1/2)ln|x/a+√(1-x²/a²)| + C
∫(0→a)1/[x+√(a²-x²)]*dx
=[ (1/2)arcsin(x/a) + (1/2)ln|x/a+√(1-x²/a²)| ]|(0→a)
=[ (1/2)arcsin(x/a) + (1/2)ln[x/a+√(1-x²/a²)] ]|(0→a)
=[(1/2)*π/2 + (1/2)ln(1+0)] - [(1/2)*0 + (1/2)ln(0+1)]
=π/4
设x=asint,则dx=acost*dt
sint=x/a,cost=√(1-x²/a²),t=arcsin(x/a)
原式=∫1/[asint+√(a²-a²sin²t)]*acost*dt
=∫1/(asint+acost)*acost*dt
=∫cost/(sint+cost)*dt
=∫(1/2)[(sint+cost)+(cost-sint)]/(sint+cost)*dt
=∫(1/2)[1+(cost-sint)/(sint+cost)]*dt
=(1/2)∫dt + (1/2)∫(cost-sint)/(sint+cost)*dt
=(1/2)t + (1/2)∫1/(sint+cost)*d(sint+cost)
=(1/2)t + (1/2)ln|sint+cost| + C
=(1/2)arcsin(x/a) + (1/2)ln|x/a+√(1-x²/a²)| + C
∫(0→a)1/[x+√(a²-x²)]*dx
=[ (1/2)arcsin(x/a) + (1/2)ln|x/a+√(1-x²/a²)| ]|(0→a)
=[ (1/2)arcsin(x/a) + (1/2)ln[x/a+√(1-x²/a²)] ]|(0→a)
=[(1/2)*π/2 + (1/2)ln(1+0)] - [(1/2)*0 + (1/2)ln(0+1)]
=π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询