已知抛物线y=ax^2+bx+c与x轴的交点是A(-1,0)B(3,0),与y轴交点是C,顶点为D
展开全部
将点A(-1,0)、B(3,0)代入抛物线y得
0=a-b+c
0=9a+3b+c
解得,b=-2a,c=-3a
∴y=ax²-2ax-3a
∵-2a/(-2a)=1 y=a-2a-3a=-4a
∴D(1,-4a)
∵当x=0时,y=-3a
∴C(0,-3a)
∴四边形ABCD的面积S=1×|-3a|÷2+|-3a-4a|×1÷2+(3-1)×|-4a|÷2=18
当a>0时
S=9a=18 a=2
∴b=-4,c=-6 y=2x²-4x-6
当a<0时
s=-9a=18 a=-2
∴b=4,c=6 y=-2x²+4x+6
看完了好评我哦~~
0=a-b+c
0=9a+3b+c
解得,b=-2a,c=-3a
∴y=ax²-2ax-3a
∵-2a/(-2a)=1 y=a-2a-3a=-4a
∴D(1,-4a)
∵当x=0时,y=-3a
∴C(0,-3a)
∴四边形ABCD的面积S=1×|-3a|÷2+|-3a-4a|×1÷2+(3-1)×|-4a|÷2=18
当a>0时
S=9a=18 a=2
∴b=-4,c=-6 y=2x²-4x-6
当a<0时
s=-9a=18 a=-2
∴b=4,c=6 y=-2x²+4x+6
看完了好评我哦~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询