2013-11-05
展开全部
.今有人共买鸡,人出九,盈十一,人出六,不足十六,问人数,鸡几何?
答案:
设鸡的数目为x,成本为y,则
9x-11=y
6x+16=y
解得x=9 y=70
2.有井不知深,先将绳三折入井,井外绳长四尺,后将绳四折入井,井外绳长一尺。问:井深绳长各几何?
答案:
井深x
绳长y
x+4=y/3
x+1=y/4
x=8
y=36
井深8尺
绳长36尺
3.今有物,不知其数.三三之数,剩二.五五之数,剩三.七七之数,剩二.问物几何?
答案:被3除的余数2乘上五和七的公倍数中除3余1的70得140
被5除的余数3乘上三和七的公倍数中除5余1的21得63
被7除的余数2乘上五和三的公倍数中除7余1的15得30
三个数相加得233,加上或减去105的整倍数即可
这是传说中的中国剩余定理的特例……
百鸡问题
《张邱建算经》中,是原书卷下第38题,也是全书的最后一题:「今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十四,值钱二十八。」该问题导致三元不定方程组,其重要之处在于开创「一问多答」的先例,这是过去中国古算书中所没有的。
秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。
物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"
这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?
变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。
这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。
这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。
我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?
这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。
如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。
例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。
要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。
最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。
为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+ 15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。
我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知。
"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:
70×2+21×3+15×4=263,
263=2×105+53,
所以,这队士兵至少有53人。
在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:
70是5与7的倍数,而用3除余1;
21是3与7的倍数,而用5除余1;
15是3与5的倍数,而用7除余1。
因而
70×2是5与7的倍数,用3除余2;
21×3是3与7的倍数,用5除余3;
15×4是3与5的倍数,用7除余4。
如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b。所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求。一般地,
70m+21n+15k (1≤m<3, 1≤n<5,1≤k<7)
能同时满足"用3除余m 、用5除余n 、用7除余k"的要求。除以105取余数,是为了求合乎题意的最小正整数解。
我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?
为了求出是5与7的倍数而用3除余1的数,我们看看5与7的最小公倍数是否合乎要求。5与7的最小公倍数是5×7=35,35除以3余2,35的2倍除以3余2,35的2倍除以3就能余1了,于是我们得到了"三人同行七十稀"。
为了求出是3与7的倍数而用5除余1的数,我们看看3与7的最小公倍数是否合乎要求。3与7的最小公倍数是3×7=21,21除以5恰好余1,于是我们得到了"五树梅花甘一枝"。
为了求出是3与5的倍数而用7除余1的数,我们看看3与5的最小公倍数是否合乎要求。3与5的最小公倍数是3×5=15,15除以7恰好余1,因而我们得到了"七子团圆正半月"。
3、5、7的最小公倍数是105,所以"除百零五便得知"。
例如:试求一数,使之用4除余3,用5除余2,用7除余5。
解:我们先求是5与7的倍数而用4除余1的数;5与7的最小公倍数是5×7=35,35除以4余3,3×3除以4余1,因而35×3=105除以4余1,105是5与7的倍数而用4除余1的数。
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
最后求的是4与5的倍数而用7除余1的数:4与5的最小公倍数是4×5=20,20除以7余6,6×6除以7余1,因而20×6=120除以7余1,所以120是4与5的倍数而用7除余1的数。
利用105、196、120这三个数可以求出符合题目要求的解:
105×3+196×2+120×5=1307。
由于4、5、7的最小公倍数是4×5×7=140,1307大于140,所以1307不是合乎题目要求的最小的解。用1037除以140得到的余数是47,47是合乎题目的最小的正整数解。
一般地,
105m+196n+120k (1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
35+196×2+120×5=1027
就是符合题意的数。
1027=7×140+47,
由此也可以得出符合题意的最小正整数解47。
《算法统宗》中把在以3、5、7为除数"物不知其数"问题中起重要作用的70、21、15这几个特征数用几句口诀表达出来了,我们也可以把在以4、5、7为除数的问题中起重要作用的105、196、120这几个特征数编为口诀。留给读者自己去编吧。
凡是三个除数两两互质的情况,都可以用上面的方法求解。
上面的方法所依据的理论,在中国称之为孙子定理,国外的书籍称之为中国剩余定理。
答案:
设鸡的数目为x,成本为y,则
9x-11=y
6x+16=y
解得x=9 y=70
2.有井不知深,先将绳三折入井,井外绳长四尺,后将绳四折入井,井外绳长一尺。问:井深绳长各几何?
答案:
井深x
绳长y
x+4=y/3
x+1=y/4
x=8
y=36
井深8尺
绳长36尺
3.今有物,不知其数.三三之数,剩二.五五之数,剩三.七七之数,剩二.问物几何?
答案:被3除的余数2乘上五和七的公倍数中除3余1的70得140
被5除的余数3乘上三和七的公倍数中除5余1的21得63
被7除的余数2乘上五和三的公倍数中除7余1的15得30
三个数相加得233,加上或减去105的整倍数即可
这是传说中的中国剩余定理的特例……
百鸡问题
《张邱建算经》中,是原书卷下第38题,也是全书的最后一题:「今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十四,值钱二十八。」该问题导致三元不定方程组,其重要之处在于开创「一问多答」的先例,这是过去中国古算书中所没有的。
秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。
物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"
这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?
变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。
这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。
这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。
我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?
这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。
如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。
例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。
要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。
最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。
为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+ 15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。
我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:
三人同行七十稀,
五树梅花甘一枝,
七子团圆正半月,
除百零五便得知。
"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。
这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。
按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:
70×2+21×3+15×4=263,
263=2×105+53,
所以,这队士兵至少有53人。
在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:
70是5与7的倍数,而用3除余1;
21是3与7的倍数,而用5除余1;
15是3与5的倍数,而用7除余1。
因而
70×2是5与7的倍数,用3除余2;
21×3是3与7的倍数,用5除余3;
15×4是3与5的倍数,用7除余4。
如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b。所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求。一般地,
70m+21n+15k (1≤m<3, 1≤n<5,1≤k<7)
能同时满足"用3除余m 、用5除余n 、用7除余k"的要求。除以105取余数,是为了求合乎题意的最小正整数解。
我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?
为了求出是5与7的倍数而用3除余1的数,我们看看5与7的最小公倍数是否合乎要求。5与7的最小公倍数是5×7=35,35除以3余2,35的2倍除以3余2,35的2倍除以3就能余1了,于是我们得到了"三人同行七十稀"。
为了求出是3与7的倍数而用5除余1的数,我们看看3与7的最小公倍数是否合乎要求。3与7的最小公倍数是3×7=21,21除以5恰好余1,于是我们得到了"五树梅花甘一枝"。
为了求出是3与5的倍数而用7除余1的数,我们看看3与5的最小公倍数是否合乎要求。3与5的最小公倍数是3×5=15,15除以7恰好余1,因而我们得到了"七子团圆正半月"。
3、5、7的最小公倍数是105,所以"除百零五便得知"。
例如:试求一数,使之用4除余3,用5除余2,用7除余5。
解:我们先求是5与7的倍数而用4除余1的数;5与7的最小公倍数是5×7=35,35除以4余3,3×3除以4余1,因而35×3=105除以4余1,105是5与7的倍数而用4除余1的数。
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
最后求的是4与5的倍数而用7除余1的数:4与5的最小公倍数是4×5=20,20除以7余6,6×6除以7余1,因而20×6=120除以7余1,所以120是4与5的倍数而用7除余1的数。
利用105、196、120这三个数可以求出符合题目要求的解:
105×3+196×2+120×5=1307。
由于4、5、7的最小公倍数是4×5×7=140,1307大于140,所以1307不是合乎题目要求的最小的解。用1037除以140得到的余数是47,47是合乎题目的最小的正整数解。
一般地,
105m+196n+120k (1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
35+196×2+120×5=1027
就是符合题意的数。
1027=7×140+47,
由此也可以得出符合题意的最小正整数解47。
《算法统宗》中把在以3、5、7为除数"物不知其数"问题中起重要作用的70、21、15这几个特征数用几句口诀表达出来了,我们也可以把在以4、5、7为除数的问题中起重要作用的105、196、120这几个特征数编为口诀。留给读者自己去编吧。
凡是三个除数两两互质的情况,都可以用上面的方法求解。
上面的方法所依据的理论,在中国称之为孙子定理,国外的书籍称之为中国剩余定理。
2013-11-05
展开全部
万京这么好学呢,秦鑫也一样哦,不过我等级高哦快五级了
题:设有六位数1abcde,乘3以后变成abcde1,求这六位数。
答:这个数是142857
因为1abcde×3=abcde1
所以e×3所得的数最后一位应该是1,所以e=7
这个数就变成1abcd7×3=abcd71
所以d×3+2(此2是3×7=21进位所得)所得的最后以为数是7,所以d=5
同理可得a=4 b=2 c=8
所以这个数是142587
谢谢采纳
题:设有六位数1abcde,乘3以后变成abcde1,求这六位数。
答:这个数是142857
因为1abcde×3=abcde1
所以e×3所得的数最后一位应该是1,所以e=7
这个数就变成1abcd7×3=abcd71
所以d×3+2(此2是3×7=21进位所得)所得的最后以为数是7,所以d=5
同理可得a=4 b=2 c=8
所以这个数是142587
谢谢采纳
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询