如何利用平分线定理证明三角形全等
1个回答
展开全部
外角平分线定理:三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。
1、由角平分线的性质联想两线段相等;
2、利用外角平分线定理,在较长的线段中截取一段与求加法运算的两条线段中的一条相等,然后证明另一端等于加法运算的另一条线段;
3、利用外角平分线定理,在较短的一条线段的基础上通过延长再截取的方法将求和的两条线段连结在一起。
三角形外角平分线定理
证明:三角形两边之比等于其夹角的外角平分线外分对边之比。
即:在△ABC中,若∠BAC的外角平分线交BC的延长线于点D,则BD︰CD=AB︰AC。
证明: 过C作AD的平行线交AB于点E。
∵EC//AD ∴BD︰CD=AB︰AE,∠1=∠AEC,∠CAD=∠ACE
∵AD为∠BAC的外角平分线
∴∠1=∠CAD
∴∠AEC=∠1=∠CAD=∠ACE
∴AE=AC
∴BD︰CD=AB︰AC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询