试确定A,B,C的值,使得e^x(1+Bx+Cx^2)=1+Ax+o(x^3),其中o(x^3)是当x→0时比x^3高阶的无穷小.
答案解析是用泰勒公式把e^x=1+x+1/4x^2+1/6x^3+o(x^3)代入为什么整理结果是1+(B+1)x+(1/2+B+C)x^2+(1/6+1/2B+C)x^...
答案解析是用泰勒公式 把 e^x=1+x+1/4x^2+1/6x^3+o(x^3)代入
为什么整理结果是1+(B+1)x+(1/2+B+C)x^2+(1/6+1/2B+C)x^3+o(x^3)=1+Ax+o(x^3)
代入后还有x^4和x^5的项,为什么舍去了?
您的回答是:因为x^4和x^5是x^3的高阶无穷小量,所以和0(x^3)合并了
但是只有当x→0时x^4和x^5才是x^3的高阶无穷小量,可是等式里并没有取x极限为零 展开
为什么整理结果是1+(B+1)x+(1/2+B+C)x^2+(1/6+1/2B+C)x^3+o(x^3)=1+Ax+o(x^3)
代入后还有x^4和x^5的项,为什么舍去了?
您的回答是:因为x^4和x^5是x^3的高阶无穷小量,所以和0(x^3)合并了
但是只有当x→0时x^4和x^5才是x^3的高阶无穷小量,可是等式里并没有取x极限为零 展开
展开全部
只有x->0是 x^3才可能是无穷小,
其他的x不行
其他的x不行
更多追问追答
追问
请问,等式整理结果其实还有x^4和x^5,为什么和o(x∧3)合并了
追答
x^4,x^5均是x^3的高阶无穷小呀,所以的高阶无穷小加起来还是高阶无穷小
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
右式的Ax右面是零还是欧
希望对你能有所帮助。
希望对你能有所帮助。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询