请求大家帮忙看道数学题 高一的 谢谢
图片地址http://hiphotos.baidu.com/zhidao/pic/item/d833c895a8afd60ad0135e49.jpg...
图片地址https://gss0.baidu.com/7LsWdDW5_xN3otqbppnN2DJv/zhidao/pic/item/d833c895a8afd60ad0135e49.jpg
展开
3个回答
展开全部
证:f(x)=[4^x+4^(-x)-2]/[4^x+4^(-x)+2]
=[4^(2x)-2*4^x+1]/[4^(2x)+2*4^x+1]
=(4^x-1)^2/(4^x+1)^2
√f(x+y)=[4^(x+y)-1]/[4^(x+y)+1]
[√f(x)+√f(y)]/[1+√f(x)f(y)]
=[(4^x-1)/(4^x+1)+(4^y-1)/(4^y+1)]/[1+(4^x-1)/(4^x+1)*(4^y-1)/(4^y+1)]
=[(4^x-1)(4^y+1)+(4^x+1)(4^y-1)]/[(4^x+1)*(4^y+1)+(4^x-1)(4^y-1)]
=[2*4^(x+y)-2]/[2*4^(x+y)+2]
=[4^(x+y)-1]/[4^(x+y)+1]
=√f(x+y)
即√f(x+y)=[√f(x)+√f(y)]/[1+√f(x)f(y)]
=[4^(2x)-2*4^x+1]/[4^(2x)+2*4^x+1]
=(4^x-1)^2/(4^x+1)^2
√f(x+y)=[4^(x+y)-1]/[4^(x+y)+1]
[√f(x)+√f(y)]/[1+√f(x)f(y)]
=[(4^x-1)/(4^x+1)+(4^y-1)/(4^y+1)]/[1+(4^x-1)/(4^x+1)*(4^y-1)/(4^y+1)]
=[(4^x-1)(4^y+1)+(4^x+1)(4^y-1)]/[(4^x+1)*(4^y+1)+(4^x-1)(4^y-1)]
=[2*4^(x+y)-2]/[2*4^(x+y)+2]
=[4^(x+y)-1]/[4^(x+y)+1]
=√f(x+y)
即√f(x+y)=[√f(x)+√f(y)]/[1+√f(x)f(y)]
展开全部
看不到题目
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是一道老题了……用定理a^x*a^y=a^(x+y)一顿导就行了,注意等号左右两边都要导、化简,耐心点自己算才会有收获
呃……才看到……楼上好有耐心,打这么多很累吧,正解!楼主把分给他吧
呃……才看到……楼上好有耐心,打这么多很累吧,正解!楼主把分给他吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询