S=1²+2²+……+n²
2个回答
展开全部
解:利用恒等式(n+1)³=n³+3n²+3n+1,得:
(n+1)³-n³=3n²+3n+1,
n³-(n-1)³=3(n-1)²+3(n-1)+1
......
3³-2³=3*(2²)+3*2+1
2³-1³=3*(1²)+3*1+1.
把n等式两端分别相加得:
(n+1)³-1=3(1²+2²+3²+....+n²)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代入上式得:
n³+3n²+3n=3(1²+2²+3²+....+n²)+3(n+1)n/2+n
整理得:
1²+2²+3²+....+n²=n(n+1)(2n+1)/6
(n+1)³-n³=3n²+3n+1,
n³-(n-1)³=3(n-1)²+3(n-1)+1
......
3³-2³=3*(2²)+3*2+1
2³-1³=3*(1²)+3*1+1.
把n等式两端分别相加得:
(n+1)³-1=3(1²+2²+3²+....+n²)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代入上式得:
n³+3n²+3n=3(1²+2²+3²+....+n²)+3(n+1)n/2+n
整理得:
1²+2²+3²+....+n²=n(n+1)(2n+1)/6
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询