展开全部
解:(1)△ACD≌△CBF
证:∵△ABC为等边三角形
∴AC=BC
∠ACD=∠B=60°
∵CD=BF
∴△ACD≌△CBF(SAS)
(2)四边形CDEF为平行四边形
∵△ACD≌△CBF
∴∠DAC=∠BCF,CF=AD
∵△AED是等边三角形
∴AD=DE
∴CF=DE①
∴∠ACG+∠BCF=60°
∴∠ACG+∠DAC=60°
∴∠AGC=180°-(∠ACG+∠DAC)=120°
∴∠DGF=∠AGC=120°
∵△AED是等边三角形
∴∠ADE=60°
∴∠DGF+∠ADE=180°
∴CF∥DE②
综合①②可得四边形CDEF是平行四边形.
(3)当点D是BC中点时,∠DEF=30°.
【学习顶起】团队为您答题。有不明白的可以追问!
如果您认可我的回答。
请点击下面的【选为满意回答】按钮。
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!
保证正确,采纳吧(*^__^*) 嘻嘻……
追问
你的图是怎么画的?
追答
帮你找的(*^__^*) 嘻嘻……
保证是对的,采纳吧支持我一下,谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询