设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f′(x)=g(x),g′(x

设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f′(x)=g(x),g′(x)=f(x),且f(0)=0,f(x)+g(x)=2... 设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f′(x)=g(x),g′(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶微分方程;(2)求出F(x)的表达式. 展开
 我来答
神剑鞘蚀59
推荐于2016-12-01 · TA获得超过102个赞
知道答主
回答量:143
采纳率:0%
帮助的人:65.7万
展开全部

(1)
因为:F(x)=f(x)g(x),
F′(x)=f′(x)g(x)+f(x)g′(x)=g2(x)+f2(x)
=[f(x)+g(x)]2-2f(x)g(x)
=(2ex2-2F(x)
=4e2x-2F(x),
所以,F(x)所满足的一阶微分方程为:
F′(x)+2F(x)=4e2x

(2)
由(1)知:F′(x)+2F(x)=4e2x
F(x)=e?∫2dx[∫4e2x?e∫2dxdx+C]
=e?2x[∫4e4xdx+C]
=e2x+Ce-2x
将F(0)=f(0)g(0)=0代入上式,得:C=-1.
所以:F(x)=e2x-e-2x
茹翊神谕者

2022-02-07 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1645万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式