已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.(Ⅰ)求数列{an},{bn}
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{1an...
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)求数列{1an?log2bn}的前n项和Tn.
展开
爱艺ykuu
2014-09-10
·
TA获得超过101个赞
知道答主
回答量:194
采纳率:100%
帮助的人:122万
关注
(Ⅰ)由a
n2-na
n-(n+1)=0,得a
n=n+1,或a
n=-1(舍去),
∴a
n=n+1;
又S
n=2b
n-2,∴n≥2时,S
n-1=2b
n-1-2,
两式相减,得b
n=S
n-S
n-1=2b
n-2b
n-1,
∴b
n=2b
n-1(n≥2),
∴{b
n}为等比数列,公比q=2,
又∵S
1=b
1=2b
1-2,∴b
1=2,
∴
bn=2×2n?1=2n.
(Ⅱ)由(Ⅰ)知,a
n=n+1,
bn=2n,
∴
==
=?,
∴
Tn=1?+?+…+?=1-
=
.
收起
为你推荐: