将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,(1)如果把图A中的△BCN绕

将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:... 将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由. 展开
 我来答
太多的诗句4471
2015-01-05 · TA获得超过127个赞
知道答主
回答量:131
采纳率:0%
帮助的人:56.3万
展开全部
(1)∵△BCN绕点C逆时针旋转90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
CF=CN
∠MCF=∠MCN
CM=CM

∴△CMF≌△CMN(SAS);

(2)①∵△CMF≌△CMN,
∴FM=MN,
又∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM 2 +AF 2 =FM 2
∴AM 2 +BN 2 =MN 2

②如图,把△BCN绕点C逆时针旋转90°得到△ACF,
则AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
CF=CN
∠MCF=∠MCN
CM=CM

∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF-∠BAC=135°-45°=90°,
∴AM 2 +AF 2 =FM 2
∴AM 2 +BN 2 =MN 2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式