设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.(Ⅰ)证明数列{an
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;(Ⅱ)证明...
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;(Ⅱ)证明1S1+1S2+…+1Sn<2;(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>a2n2恒成立,求这样的正整数m共有多少个?
展开
1个回答
展开全部
(Ⅰ)由已知,2Sn=an2+an,且an>0.,当n=1时,2a1=a12+a1,解得a1=1.
当n≥2时,有2Sn-1=an-12+an-1.于是2Sn-2Sn-1=an2-an-12+an-an-1,即2an=an2-an-12+an-an-1
.于是an2-an-12=an+an-1,即(an+an-1)(an-an-1)=an+an-1.
因为an+an-1>0,所以an-an-1=1(n≥2).
故数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)因为an=n,则Sn=
=2(
-
)枣雀.
所以
+
++
=2[(1-
)+(
-
)++(
-
)]=2(1-
)<2;
(Ⅲ)由Sn-1005>
,得
-1005>
,即
>1005,所以n>2010.
由题设猜肆,M={2000,2002,,2008,2010,2012,,2998},
因为m∈M,所以m=2010,2012,,2998均满足条件,且这些数组成首穗岩轿项为2010,公差为2的等差数列.
设这个等差数列共有k项,则2010+2(k-1)=2998,
解得k=495.
故集合M中满足条件的正整数m共有495个.
当n≥2时,有2Sn-1=an-12+an-1.于是2Sn-2Sn-1=an2-an-12+an-an-1,即2an=an2-an-12+an-an-1
.于是an2-an-12=an+an-1,即(an+an-1)(an-an-1)=an+an-1.
因为an+an-1>0,所以an-an-1=1(n≥2).
故数列{an}是首项为1,公差为1的等差数列,且an=n.
(Ⅱ)因为an=n,则Sn=
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
所以
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
(Ⅲ)由Sn-1005>
| ||
2 |
n(n+1) |
2 |
n2 |
2 |
n |
2 |
由题设猜肆,M={2000,2002,,2008,2010,2012,,2998},
因为m∈M,所以m=2010,2012,,2998均满足条件,且这些数组成首穗岩轿项为2010,公差为2的等差数列.
设这个等差数列共有k项,则2010+2(k-1)=2998,
解得k=495.
故集合M中满足条件的正整数m共有495个.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询