高中数列问题,高手来

a1=1,a(n+1)=2an+n^2+2n+2求an... a1=1,a(n+1)=2an+n^2+2n +2 求an 展开
知行堂9号
2010-07-28 · 吾生也有涯,而知也无涯
知行堂9号
采纳数:235 获赞数:1100

向TA提问 私信TA
展开全部
a(n+1)=2a(n)+n^2+2n+2
a(n)=2a(n-1)+(n-1)^2+2(n-1)+2
两式相减整理得
a(n+1)-3a(n)+2a(n-1)=2n+1
a(n)-3a(n-1)+2a(n-2)=2(n-1)+1
两式相减整理得
a(n+1)-4a(n)+5a(n-1)-2a(n-2)=2
a(n)-4a(n-1)+5a(n-2)-2a(n-3)=2
两式相减整理得
a(n+1)-5a(n)+9a(n-1)-7a(n-2)+2a(n-3)=0
至此,可用特征根解线性齐次递归方程的办法求解得
a(n)=b*2^n+c*n^2+d*n+e
将a(1)、a(2)、a(3)、a(4)的值分别代入解方程得出b、c、d、e的值,再代入上式得
a(n)=13*2^(n-1)-n^2-4n-7
天狐之尾
2010-07-28
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
设a(n+1)+x(n+1)^2+y(n+1)+z=2(an+xn^2+yn+z)
解得:x=1,y=4,z=7
所以a(n+1)+(n+1)^2+4(n+1)+7=2(an+n^2+4n+7)
令:bn=an+n^2+4n+7
那么b(n+1)=2bn
bn=2^(n-1).b1
b1=13
所以bn=13X2^(n-1)
an=13X2^(n-1)-n^2-4n-7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式