如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(

如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交... 如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),∠BAO=30°.(1)求AB的长度;(2)以AB为一边作等边△ABE,作OA的垂直平分线MN交AB的垂线AD于点D.求证:BD=OE;(3)在(2)的条件下,连接DE交AB于F.求证:F为DE的中点. 展开
 我来答
国安冠军845M
推荐于2016-11-22 · 超过55用户采纳过TA的回答
知道答主
回答量:184
采纳率:0%
帮助的人:133万
展开全部
(1)解:∵在Rt△ABO中,∠BAO=30°,
∴AB=2BO=2;

(2)证明:连接OD,
∵△ABE为等边三角形,
∴AB=AE,∠EAB=60°,
∵∠BAO=30°,作OA的垂直平分线MN交AB的垂线AD于点D,
∴∠DAO=60°.
∴∠EAO=∠NAB
又∵DO=DA,
∴△ADO为等边三角形.
∴DA=AO.
在△ABD与△AEO中,
AB=AE
∠EAO=∠NAB
DA=AO

∴△ABD≌△AEO(SAS).
∴BD=OE.

(3)证明:作EH⊥AB于H.
∵AE=BE,∴AH=
1
2
AB,
∵BO=
1
2
AB,∴AH=BO,
在Rt△AEH与Rt△BAO中,
AH=BO
AE=AB

∴Rt△AEH≌Rt△BAO(HL),
∴EH=AO=AD.
又∵∠EHF=∠DAF=90°,
在△HFE与△AFD中,
∠EHF=∠DAF
∠EFH=∠DFA
EH=AD

∴△HFE≌△AFD(AAS),
∴EF=DF.
∴F为DE的中点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式