如图①,在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F.(1

如图①,在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F.(1)求证:BE-DF=EF;(2)如图②,若点P在D... 如图①,在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F.(1)求证:BE-DF=EF;(2)如图②,若点P在DC的延长线上,其余条件不变,则BE,DF,EF有怎样的数量关系______(不用证明)(3)如图③,若点P在CD的延长线上,其余条件不变,画出图形,写出此时BE,DF,EF之间的数量关系,并证明你的结论. 展开
 我来答
杠上开发大新年1935
推荐于2016-12-01 · TA获得超过446个赞
知道答主
回答量:109
采纳率:0%
帮助的人:133万
展开全部
(1)证明:∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∵DF⊥AP,BE⊥AP,
∴∠AFD=∠BEA=90°,
∴∠DAF+∠BAE=90°,∠BAE+∠ABE=90°,
∴∠DAF=∠弯谈ABE,
在△DAF和△ABE中
∠DAF=∠ABE
∠AFD=∠BEA
AD=AB

∴△DAF≌△ABE(带笑AAS),
∴AF=BE,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF;

(2)解:DF-BE=EF,
故答案为:DF-BE=EF;

(3)BE+DF=EF,
证明:∵四边形ABCD是正方形,蠢闹含
∴AD=AB,∠DAB=90°,
∵DF⊥AP,BE⊥AP,
∴∠AFD=∠BEA=90°,
∴∠DAF+∠BAE=90°,∠BAE+∠ABE=90°,
∴∠DAF=∠ABE,
在△DAF和△ABE中
∠DAF=∠ABE
∠AFD=∠BEA
AD=AB

∴△DAF≌△ABE(AAS),
∴AF=BE,AE=DF,
∵AF+AE=EF,
∴BE+DF=EF.
云夕匕
2018-07-06
知道答主
回答量:1
采纳率:0%
帮助的人:850
展开全部
(1)BF-DF=EF
DF-BE=EF
DF+BE=EF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式