展开全部
1、任意加上或去掉级数的有限想不改变它的收敛性。
2、若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛。
通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(n+1)只是比∑Un少一项U1,去掉级数的有限项是不改变收敛性的,所以∑U(n+1)也收敛,再利用级数的性质,∑(Un+U(n+1))收敛。
扩展资料
数收敛定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数1+2+3+4+……。
展开全部
∑ u^2 与 ∑ v^2收敛 证明级数∑ uv收敛 因为∑ u^2 与 ∑ v^2收敛, 则∑ u^2 + ∑ v^2收敛 而∑ (u^2 + v^2)>=2∑uv 则∑ uv收敛 设级数∑ u 绝对收敛 证明∑u^2收敛 ∑ u 绝对收敛,则∑|u|收敛, 则有:|Un|/|Un-1|=r 因为此时为正项数列不可能为
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-09-28
展开全部
第一个命题正确,若级数收敛,则Un极限为0.很好证明,limSn=A,limS(n-1)=A
Un=Sn-S(n-1),则limUn=lim(Sn-S(n-1))=A-A=0.
第一个命题是其逆否命题,是等价的。
第二个命题是假命题。举例:通项为(-1)^n / √n.这是个交错级数,根据莱布尼茨判别法可以知道收敛。但是un^2为1/n,调和级数,显然发散
Un=Sn-S(n-1),则limUn=lim(Sn-S(n-1))=A-A=0.
第一个命题是其逆否命题,是等价的。
第二个命题是假命题。举例:通项为(-1)^n / √n.这是个交错级数,根据莱布尼茨判别法可以知道收敛。但是un^2为1/n,调和级数,显然发散
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-07-06
展开全部
命题是错误的,比如取un=1/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-10-06
展开全部
第一个命题正确,若级数收敛,则Un极限为0.很好证明,limSn=A,limS(n-1)=A
Un=Sn-S(n-1),则limUn=lim(Sn-S(n-1))=A-A=0.
第一个命题是其逆否命题,是等价的。
第二个命题是假命题。举例:通项为(-1)^n / √n.这是个交错级数,根据莱布尼茨判别法可以知道收敛。但是un^2为1/n,调和级数,显然发散
Un=Sn-S(n-1),则limUn=lim(Sn-S(n-1))=A-A=0.
第一个命题是其逆否命题,是等价的。
第二个命题是假命题。举例:通项为(-1)^n / √n.这是个交错级数,根据莱布尼茨判别法可以知道收敛。但是un^2为1/n,调和级数,显然发散
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询