求极限时什么时候可以把x~0代入? 5
第二行到第三行这一步骤,为什么可以把0直接代入【】里得到2呢?在求极限的时候什么时候可以把x的趋近值代入?还有这儿,第二步到第三步,也是把0代入了第一个cosx中得到了e...
第二行到第三行这一步骤,为什么可以把0直接代入【】里得到2呢?
在求极限的时候什么时候可以把x的趋近值代入?
还有这儿,第二步到第三步,也是把0代入了第一个cos x中得到了e^0=1,是不是当某个部分来自乘法的时候就可以把x的趋近值代入? 展开
在求极限的时候什么时候可以把x的趋近值代入?
还有这儿,第二步到第三步,也是把0代入了第一个cos x中得到了e^0=1,是不是当某个部分来自乘法的时候就可以把x的趋近值代入? 展开
20个回答
展开全部
求极限一般是四种套路!
1,直接代入!
比如:x趋向0时,(x+2)/(x-1)的极限,直接代入=-2
2,化简后代入(利用因式分解)(比如你提供的图片的第一道题目的第二个等号)
比如:x趋向2时,(x²-4)/(x-2)的极限!
这时候直接代入就会导致分母没意义!
但是,把分子因式分解后可以化简成(x-2)(x+2)/(x-2)=x+2,这时候再把x趋向2代入,极限=4!
3,利用等阶无穷小量来代换!
比如:x趋向0时,sinx∽x,所以,
x趋向0时,(x+1)sinx/x(x-2)的极限=(x+1)x/x(x-2)=(x+1)/(x-2),代入趋向值,极限=-1/2!
那么你提供的解析里面的第二道就是用了这个手段!
把指数的等阶无穷小量换成了多项式型的函数!
因为,x趋向0时,(e^x-1)∽x!
所以(e^(x²-2+2cosx) -1)∽(x²-2+2cosx)!
这些等阶无穷小的使用,需要记住一些基本的常用的,然后根据题目的需要进行适当的变化!
4,利用洛必达准则(每个等阶无穷小量几乎都可以利用洛必达加以证明验算)
比如你提供的题目的第一张图片,最后那个等号:
x趋向0时,(sinx-x)/(2x²),这是0/0型的极限,就该用洛必达:
x趋向0时,
(sinx-x)/(2x²)的极限=(cosx-1)/(4x)的极限=(-sinx/4)=0
所以,第一题的答案最后结果应该是=-1/2
1,直接代入!
比如:x趋向0时,(x+2)/(x-1)的极限,直接代入=-2
2,化简后代入(利用因式分解)(比如你提供的图片的第一道题目的第二个等号)
比如:x趋向2时,(x²-4)/(x-2)的极限!
这时候直接代入就会导致分母没意义!
但是,把分子因式分解后可以化简成(x-2)(x+2)/(x-2)=x+2,这时候再把x趋向2代入,极限=4!
3,利用等阶无穷小量来代换!
比如:x趋向0时,sinx∽x,所以,
x趋向0时,(x+1)sinx/x(x-2)的极限=(x+1)x/x(x-2)=(x+1)/(x-2),代入趋向值,极限=-1/2!
那么你提供的解析里面的第二道就是用了这个手段!
把指数的等阶无穷小量换成了多项式型的函数!
因为,x趋向0时,(e^x-1)∽x!
所以(e^(x²-2+2cosx) -1)∽(x²-2+2cosx)!
这些等阶无穷小的使用,需要记住一些基本的常用的,然后根据题目的需要进行适当的变化!
4,利用洛必达准则(每个等阶无穷小量几乎都可以利用洛必达加以证明验算)
比如你提供的题目的第一张图片,最后那个等号:
x趋向0时,(sinx-x)/(2x²),这是0/0型的极限,就该用洛必达:
x趋向0时,
(sinx-x)/(2x²)的极限=(cosx-1)/(4x)的极限=(-sinx/4)=0
所以,第一题的答案最后结果应该是=-1/2
展开全部
答:只要你能明显看出极限的发展趋势,你就可以代入这个趋近值0(当然,对于其它的题也可能是3,也能是∞)。也就是说,代入这个趋近数,不影响函数的发展变化。你说的第二行到第三行,就是这种情况。
这类问题,之所以成为问题,就是因为,我们从题面上看是0/0、或者∞/∞、或者1^∞、或者∞^0,等等;就是让我们求出来它是收敛的,还是发散的。从而知道,两个函数之间是同阶无穷小(或无穷大),还是高(低)阶无穷小(大)。
从最后一个等号,可以看出,如果分母是x^3, 就必须有:sinx→[x-(1/3!)x^3] 才不会影响函数极限的答案。所以说,分子只要是省略掉分母的高阶无穷小,不会影响函数的答案,而同阶无穷小,绝对不能忽略。这就是说,当带入趋近值时,不要忽略分子和分母的同阶无穷小就不会出现计算结果的偏差。
因此,对于不影响函数对比的主体函数的系数,如果是收敛的,可以提前代入趋近数值,只要充分考虑到相对同阶无穷小不可忽略的原则就不会出现问题。从而便于主体函数的对比;如果是发散的系数,则绝不能代入趋近值。否则,它会影响函数对比的最终结果。
这类问题,之所以成为问题,就是因为,我们从题面上看是0/0、或者∞/∞、或者1^∞、或者∞^0,等等;就是让我们求出来它是收敛的,还是发散的。从而知道,两个函数之间是同阶无穷小(或无穷大),还是高(低)阶无穷小(大)。
从最后一个等号,可以看出,如果分母是x^3, 就必须有:sinx→[x-(1/3!)x^3] 才不会影响函数极限的答案。所以说,分子只要是省略掉分母的高阶无穷小,不会影响函数的答案,而同阶无穷小,绝对不能忽略。这就是说,当带入趋近值时,不要忽略分子和分母的同阶无穷小就不会出现计算结果的偏差。
因此,对于不影响函数对比的主体函数的系数,如果是收敛的,可以提前代入趋近数值,只要充分考虑到相对同阶无穷小不可忽略的原则就不会出现问题。从而便于主体函数的对比;如果是发散的系数,则绝不能代入趋近值。否则,它会影响函数对比的最终结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询