高数学什么?

 我来答
星韵微笑
推荐于2017-09-05 · TA获得超过392个赞
知道小有建树答主
回答量:301
采纳率:0%
帮助的人:177万
展开全部
目录在此
第1章 函数的极限与连续
  1.1函数
  1.1.1集合与区间
  1.1.2函数
  1.1.3初等函数
  1.2数列的极限
  1.2.1数列
  1.2.2数列极限的定义
  1.2.3关于数列极限的几个结论
  1.3函数的极限
  1.3.1自变量趋向于无穷大时函数的极限
  1.3.2自变量趋向有限值时函数的极限
  1.3.3函数极限的性质
  1.4无穷小量与无穷大量
  1.4.1无穷小量
  1.4.2无穷大量
  1.4.3无穷小量的运算性质
  1.5极限的运算法则
  1.6两个重要极限
  1.6.1夹逼定理
  1.6.2重要极限:

1.6.3数列收敛准则
  1.6.4重要极限:

1.7无穷小量的比较
  1.8函数的连续性与间断点
  1.8.1函数的连续性
  1.8.2函数的间断点
  1.8.3连续函数的运算
  1.8.4初等函数的连续性
  1.9闭区间上连续函数的性质
  本章小结
  复习题1
第2章 导数与微分
  2.1导数的概念
  2.1.1两个实例
  2.1.2导数的定义
  2.1.3求导数举例
  2.1.4导数的几何意义
  2.1.5函数的可导性与连续性的关系
  2.2函数的求导法则
  2.2.1函数的和、差、积、商的求导法则
  2.2.2反函数的导数
  2.2.3复合函数的导数
  2.2.4初等函数的导数
  2.3高阶导数
  2.4隐函数及参数方程所确定的函数的导数
  2.4.1隐函数的导数
  2.4.2参数方程确定的函数的导数
  2.4.3相关变化率
  2.5函数的微分及其应用
  2.5.1微分的概念
  2.5.2微分的几何意义
  2.5.3微分的运算
  2.5.4微分在近似计算中的应用
  本章小结
  复习题2
第3章 中值定理与导数的应用
  3.1中值定理
  3.1.1罗尔定理
  3.1.2拉格朗日中值定理
  3.1.3柯西中值定理
  3.2洛必达法则
  3.3函数的单调性与函数的极值
  3.3.1函数的单调性
  3.3.2函数的极值
  3.3.3最大值和最小值问题
  3.4曲线的凹凸、拐点及函数作图
  3.4.1曲线的凹凸及其判定方法
  3.4.2函数作图
  3.5泰勒公式
  3.5.1泰勒公式
  3.5.2几个常见函数的麦克劳林公式
  3.6弧微分及曲率
  3.6.1弧微分
  3.6.2曲率及其计算公式
  3.6.3曲率圆
  3.7方程的近似解
  3.7.1二分法
  3.7.2切线法
  本章小结
  复习题3
第4章 不定积分
  4.1不定积分的概念与性质
  4.1.1不定积分的概念
  4.1.2不定积分的性质
  4.1.3基本积分表
  4.2换元积分法
  4.2.1第一类换元法
  4.2.2第二类换元法
  4.3分部积分法
  4.4两类函数的积分
  4.4.1有理函数的积分
  4.4.2三角函数有理式的积分
  4.5积分表的使用
  本章小结
  复习题4
第5章 定积分及其应用
  5.1定积分的概念
  5.1.1两个实际问题
  5.1.2定积分的概念
  5.2定积分的性质
  5.3微积分基本公式
  5.3.1变上限的定积分
  5.3.2微积分基本公式
  5.4定积分的换元积分法和分部积分法
  5.4.1定积分的换元积分法
  5.4.2定积分的分部积分法
  5.5定积分的近似计算
  5.5.1矩形法
  5.5.2梯形法
  5.5.3抛物线法
  5.6广义积分
  5.6.1无穷限的广义积分
  5.6.2无界函数的广义积分
  5.7定积分的应用
  5.7.1定积分的元素法
  5.7.2几何应用
  5.7.3定积分的实际应用
  本章小结
  复习题5
第6章 向量代数与空间解析几何
  6.1空间直角坐标系
  6.1.1空间直角坐标系
  6.1.2两点间的距离公式
  6.2向量的概念
  6.2.1向量的概念
  6.2.2向量的加减法
  6.3向量的坐标表达式
  6.3.1向量的坐标
  6.3.2向量的模与方向余弦
  6.4数量积与向量积
  6.4.1两向量的数量积
  6.4.2两向量的向量积
  6.5空间曲面与曲线的方程
  6.5.1曲面方程
  6.5.2空间曲线方程
  6.6空间平面的方程
  6.6.1平面的点法式方程
  6.6.2平面的一般方程
  6.7空间直线的方程
  6.7.1空间直线的一般式方程
  6.7.2空间直线的标准式方程
  6.7.3直线的参数方程
  6.8常见的二次曲面的图形
  6.8.1椭球面
  6.8.2双曲面
  6.8.3抛物面
  6.8.4二次锥面
  本章小结
  复习题6
第7章 多元函数微分法及其应用
  7.1多元函数的基本概念
  7.1.1区域
  7.1.2多元函数的概念
  7.1.3二元函数的极限
  7.1.4二元函数的连续性
  7.2偏导数
  7.2.1偏导数的定义及计算方法
  7.2.2高阶偏导数
  7.3全微分及其应用
  7.3.1全微分的概念
  7.3.2全微分在近似计算中的应用
  7.4多元函数的微分法
  7.4.1多元复合函数的求导法则
  7.4.2隐函数的求导公式
  7.5偏导数的几何应用
  7.5.1空间曲线的切线及法平面
  7.5.2曲面的切平面与法线
  7.6方向导数与梯度
  7.6.1方向导数
  7.6.2梯度
  7.7多元函数的极值
  7.7.1多元函数的极值及最大值、最小值
  7.7.2条件极值
  本章小结
  复习题7
第8章 重积分
  8.1二重积分的概念与性质
  8.1.1二重积分的概念
  8.1.2二重积分的性质
  8.2二重积分的计算方法
  8.2.1二重积分在直角坐标系中的计算方法
  8.2.2二重积分在极坐标系中的计算方法
  8.3二重积分应用举例
  8.3.1几何应用举例
  8.3.2物理学应用举例
  8.4三重积分的概念及计算方法
  8.4.1三重积分的概念
  8.4.2在直角坐标系中计算三重积分
  8.4.3在柱面坐标系中计算三重积分
  8.4.4在球面坐标系中计算三重积分
  本章小结
  复习题8
第9章 曲线积分与曲面积分
  9.1对弧长的曲线积分
  9.1.1对弧长曲线积分的概念与性质
  9.1.2对弧长的曲线积分的计算法
  9.2对坐标的曲线积分
  9.2.1对坐标的曲线积分的概念与性质
  9.2.2对坐标的曲线积分的计算法
  9.2.3两类曲线积分之间的联系
  9.3格林公式
  9.3.1格林公式
  9.3.2曲线积分与路径无关的条件
  9.4曲面积分
  9.4.1对面积的曲面积分
  9.4.2对坐标的曲面积分
  9.4.3两类曲面积分之间的联系
  9.4.4高斯公式
  本章小结
  复习题9
第10章 级数
  10.1数项级数
  10.1.1无穷级数的敛散性
  10.1.2无穷级数的性质
  10.1.3级数收敛的必要条件
  10.2常数项级数审敛法
  10.2.1正项级数的审敛法
  10.2.2交错级数的审敛法
  10.2.3绝对收敛与条件收敛
  10.3幂级数
  10.3.1幂级数的概念
  10.3.2幂级数的收敛性
  10.3.3幂级数的运算
  10.4函数展开成泰勒级数
  10.4.1泰勒级数
  10.4.2把函数展成幂级数
  *10.4.3函数的幂级数展开式的应用举例
  10.4.4欧拉公式
  10.5傅里叶级数
  10.5.1以2π为周期的函数的傅里叶级数
  10.5.2定义在[-π,π]或[0,π]上的函数的傅里叶级数
  10.5.3以2l为周期的函数的傅里叶级数
  本章小结
  复习题10
第11章 微分方程
  11.1微分方程的基本概念
  11.1.1微分方程
  11.1.2微分方程的阶
  11.1.3微分方程的解
  11.2可分离变量的微分方程
  11.3一阶线性微分方程
  11.3.1一阶齐次线性方程通解的求法
  11.3.2一阶非齐次线性方程通解的求法
  11.4可降阶的二阶微分方程
  11.4.1 y″=f(x)型的微分方程
  11.4.2 y″=f(x,y′)型的微分方程
  11.4.3 y″=f(y,y′)型的微分方程
  11.5二阶常系数齐次线性微分方程
  11.5.1二阶常系数齐次线性微分方程解的性质
  11.5.2二阶常系数齐次线性微分方程的解法
  11.6二阶常系数非齐次线性微分方程
  11.6.1二阶常系数非齐次线性微分方程解的性质
  11.6.2二阶常系数非齐次线性微分方程的解法
匿名用户
2015-06-29
展开全部
高中数学学二次函数,方程,不等式,数列,复数,三角函数,对数函数,概率,导数,圆锥曲线......
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ilotasw
2015-06-29 · TA获得超过1.6万个赞
知道大有可为答主
回答量:3122
采纳率:73%
帮助的人:777万
展开全部
很多的。 大一先学函数极限,导数微分,积分包括定积分,不定积分,然后就是微分方程,还要学空间几何向量,多重积分,级数。。。基本上就这些,,还有就是在大二的时候学复变函数,矩阵,概率论!!基本上把我在大学里学了数学有关的科目都说了,,希望对你想了解大学数学有帮助,,如果满意,,请采纳一下 ,谢谢了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式