用二重积分求由曲线y=x^2与直线y=x+3所围成的平面图形的面积
展开全部
解题过程如下:
y = x²,y =-x+2
∫ (2-x)dx - ∫ x² dx
=∫(0,3)x+3-(x²-2x+3)dx
=∫(0,3)-x²+3xdx
=[-x³/3+3x²/2]|(0,3)
=-9+27/2
=9/2
扩展资料
性质:
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |