数学的解答题
已知A是一个质数,而且A+6,A+8,A+12,A+14都是质数;试求出所有满足要求的质数A。...
已知A是一个质数,而且A+6,A+8,A+12,A+14都是质数;试求出所有满足要求的质数A。
展开
1个回答
展开全部
分析与解:从最小的质数开始试算。
A=2时,A+10=12,12是合数不是质数,所以A≠2。
A=3时,A+10=13,是质数;A+14=17也是质数,所以A等于3是所求的质数。
A除了等于3外,还可以是别的质数吗?因为质数有无穷多个,所以不可能一一去试,必须采用其它方法。
A,(A+1),(A+2)除以3的余数各不相同,而(A+1)与(A+10)除以3的余数相同,(A+2)与(A+14)除以3的余数相同,所以A,(A+10),(A+14)除以3的余数各不相同。因为任何自然数除以3只有整除、余1、余2三种情况,所以在A,(A+10),(A+14)中必有一个能被3整除。能被3整除的质数只有3,因为(A+10),(A+14)都大于3,所以A=3。也就是说,本题唯一的解是A=3。
A=2时,A+10=12,12是合数不是质数,所以A≠2。
A=3时,A+10=13,是质数;A+14=17也是质数,所以A等于3是所求的质数。
A除了等于3外,还可以是别的质数吗?因为质数有无穷多个,所以不可能一一去试,必须采用其它方法。
A,(A+1),(A+2)除以3的余数各不相同,而(A+1)与(A+10)除以3的余数相同,(A+2)与(A+14)除以3的余数相同,所以A,(A+10),(A+14)除以3的余数各不相同。因为任何自然数除以3只有整除、余1、余2三种情况,所以在A,(A+10),(A+14)中必有一个能被3整除。能被3整除的质数只有3,因为(A+10),(A+14)都大于3,所以A=3。也就是说,本题唯一的解是A=3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询