什么时候该用换元积分法什么时候改用分部积分法

 我来答
粒下
2019-06-06 · TA获得超过1.2万个赞
知道答主
回答量:64
采纳率:0%
帮助的人:9872
展开全部

用换元积分法的条件

当被积函数比较复杂时,拿出积分中的一部分放到d后面的括号中去,若能凑成∫f(u)du的形式,则换元成功。

或者当被积函数不容易积分(如含有根式以及反三角函数)时,可以通过换元法从d后拿出一部分放到前面来,就成为∫f[g(u)]g´(u)du的形式,若f[g(u)]g´(u)du积分,则换元成功。

用分部积分法的条件

可以知道分部积分法的公式为

所以可以知道这个方法主要适用于求∫u(x)v´(x)dx比较困难,求∫u´(x)v(x)dx比较容易的情形。

扩展资料:

分部积分法的积分原则

一般地,从要求的积分式中将v´(x)dx凑成dv是容易的,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。

分部积分法最重要之处就在于准确地选取dv,因为一旦dv确定,则公式中右边第二项∫vdu中的du也随之确定,但为了使式子得到精简,如何选取dv则要依du的复杂程度决定,也就是说,选取的dv一定要使du比之前的形式更简单或更有利于求得积分。

所以可以得到下面四种典型的模式。 记忆模式口诀:反(函数)对(数函数)幂(函数)三(角函数)指(数函数)。

参考资料来源:百度百科-换元积分法

参考资料来源:百度百科-分部积分法

PasirRis白沙
高粉答主

2015-07-14 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:3043万
展开全部

1、关于什么时候该做变量代换,一般都是有规律可循的,

     下面的第一张图片中,给予了三角代换方面的总结;

2、变量代换的目的,是为了简化,例如去除根式;

      分部积分也是为了简化,例如为了将lnx转成1/x;

      又如将幂次降低;再如利用循环出现被积函数,

      解一个简单的但是方程;、、、

3、请楼主仔细参看下面的图片,每张图片均可点击放大;

4、如有疑问,欢迎追问,有问必答。





本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
你的眼神唯美
2020-02-04 · 海离薇:不定积分,求导验证。
你的眼神唯美
采纳数:1541 获赞数:61961

向TA提问 私信TA
展开全部

不定积分结果不唯一求导验证应该能够提高凑微分的计算能力

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式