求级数∑(-1)^n/((√n)(n+1))的敛散性 我来答 可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。 级数 n+1 搜索资料 1个回答 #热议# 在购买新能源车时,要注意哪些? hxzhu66 高粉答主 2015-06-28 · 醉心答题,欢迎关注 知道大有可为答主 回答量:2.6万 采纳率:97% 帮助的人:1.2亿 我也去答题访问个人页 关注 展开全部 你好!由于|(-1)^n/((√n)(n+1))|=1/((√n)(n+1))<1/((√n)n=1/n^(3/2),而级数∑1/n^(3/2)收敛,所以级数∑(-1)^n/((√n)(n+1))绝对收敛。经济数学团队帮你解答,请及时采纳。谢谢! 追问 可以用比值申敛法判断吗? 追答 不行,用比值法求出的极限是1,不能判断。 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容2025精选三角函数高中-全新文档内容-下载即用熊猫办公海量三角函数高中,适合各行业使用文档内容,下载使用,高效方便。全新三角函数高中,完整范文.word格式,满足各种需求。www.tukuppt.com广告 其他类似问题 2021-07-04 级数(-1)^(n+1) (n/(n+1))的敛散性 2021-08-19 级数(1-cosπ/n)敛散性 3 2021-06-10 急求级数√n+1乘以(1-cosπ/n)的敛散性 提供下思路也行 2021-06-11 急求级数√n+1乘以(1-cosπ/n)的敛散性 提供下思路也行 3 2020-12-12 级数(-1)^n/√n的敛散性? 2 2022-03-12 讨论级数(1->∞)n^λsin(π/2√n)的敛散性 2022-05-26 级数(n+1)!/n^n+1敛散性 2022-08-08 级数(1-cosπ/n)敛散性 更多类似问题 > 为你推荐: