1个回答
展开全部
1. f(x)=|x|+4/x, 定义域为除0外的任意实数
当x>0时,f(x)=x+4/x, 令 0<x1<x2<2, f(x1)-f(x2)=x1-x2+4(x2-x1)/x1x2
=(x2-x1)(4/x1x2-1)>0 ,递减 (因为x1x2<4 --> 4/x1x2>1)
令 2<=x1<x2, f(x1)-f(x2)=x1-x2+4(x2-x1)/x1x2=(x2-x1)(4/x1x2-1)<0,递增
当x<0时,f(x)=-x+4/x, 令 x1<x2<0, f(x1)-f(x2)=x2-x1+4(x2-x1)/x1x2
=(x2-x1)(4/x1x2+1)>0 ,递减 (因为0<x1x2 )
综上,f(x)在(-无穷,0)以及(0,2)分别递减,在[2,正无穷)递增
2. 令 0<x1<x2<√2/2, f(x1)-f(x2)=2(x1-x2)+(x2-x1)/x1x2
=(x2-x1)(1/x1x2-2)>0 ,递减 (因为x1x2<1/2 --> 1/x1x2>2)
令 √2/2<=x1<x2, f(x1)-f(x2)=2(x1-x2)+(x2-x1)/x1x2=(x2-x1)(1/x1x2-2)<0,递增
因为f(x)关于(0,1)中心对称,所以在(-无穷,-√2/2)及(√2/2,+无穷)分别递增,在(0,√2/2)及(-√2/2,0)递减
-------------------------------------------------------------------
如果学了导函数就简单多了f'(x)>0则递增,f’(x)<0递减
当x>0时,f(x)=x+4/x, 令 0<x1<x2<2, f(x1)-f(x2)=x1-x2+4(x2-x1)/x1x2
=(x2-x1)(4/x1x2-1)>0 ,递减 (因为x1x2<4 --> 4/x1x2>1)
令 2<=x1<x2, f(x1)-f(x2)=x1-x2+4(x2-x1)/x1x2=(x2-x1)(4/x1x2-1)<0,递增
当x<0时,f(x)=-x+4/x, 令 x1<x2<0, f(x1)-f(x2)=x2-x1+4(x2-x1)/x1x2
=(x2-x1)(4/x1x2+1)>0 ,递减 (因为0<x1x2 )
综上,f(x)在(-无穷,0)以及(0,2)分别递减,在[2,正无穷)递增
2. 令 0<x1<x2<√2/2, f(x1)-f(x2)=2(x1-x2)+(x2-x1)/x1x2
=(x2-x1)(1/x1x2-2)>0 ,递减 (因为x1x2<1/2 --> 1/x1x2>2)
令 √2/2<=x1<x2, f(x1)-f(x2)=2(x1-x2)+(x2-x1)/x1x2=(x2-x1)(1/x1x2-2)<0,递增
因为f(x)关于(0,1)中心对称,所以在(-无穷,-√2/2)及(√2/2,+无穷)分别递增,在(0,√2/2)及(-√2/2,0)递减
-------------------------------------------------------------------
如果学了导函数就简单多了f'(x)>0则递增,f’(x)<0递减
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询