八年级数学题

如图所示,已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线L经过原点,与线段AB交于点C,把△AOB的面积分为1:2的两部分,求直线L的解析式.【这是在函数一章遇... 如图所示,已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线L经过原点,与线段AB交于点C,把△AOB的面积分为1:2的两部分,求直线L的解析式.

【这是在函数一章遇到的题】据说分两种情况.
展开
czjssyczj
2010-07-28 · TA获得超过3893个赞
知道小有建树答主
回答量:777
采纳率:0%
帮助的人:0
展开全部
过点C,分别作CD垂直x轴,CE垂直y轴
面积分为1:2,则
若S△AOC:S△BOC=1:2
当y=0时,得0=x+3,解得x=-3,所以点B的坐标为(-3,0)
当x=0时,y=x+3=0+3=3,所以点B的坐标为(3,3)
S△AOB=AO*BO*0.5=IxI*IyI*(1/2)=3*3*0.5=4.5
则S△AOC=AO*CD*0.5=3*CD*0.5=1.5CD=4.5/(1+2)*1=1.5,
S△BOC=BO*CE*0.5=3*CE*0.5=1.5CE=4.5/(1+2)*2=3
所以CD=1,CE=2
所以点C的坐标为(-2,1)
直线L过原点,设直线L的解析式为y=kx
将x=-2,y=1代入y=kx
得,1=-2k,解得k=-1/2
所以直线L的解析式为y=-x/2

过点C,分别作CD垂直x轴,CE垂直y轴
面积分为1:2,则
若S△BOC:S△AOC=1:2
当y=0时,得0=x+3,解得x=-3,所以点B的坐标为(-3,0)
当x=0时,y=x+3=0+3=3,所以点B的坐标为(3,3)
S△AOB=AO*BO*0.5=IxI*IyI*(1/2)=3*3*0.5=4.5
则S△AOC=AO*CD*0.5=3*CD*0.5=1.5CD=4.5/(1+2)*2=3,
S△BOC=BO*CE*0.5=3*CE*0.5=1.5CE=4.5/(1+2)*1=1.5
所以CD=2,CE=1
所以点C的坐标为(-1,2)
直线L过原点,设直线L的解析式为y=kx
将x=-1,y=2代入y=kx
得,2=-1k,解得k=-2
所以直线L的解析式为y=-2x
门之恋r
2010-07-28 · TA获得超过869个赞
知道小有建树答主
回答量:913
采纳率:100%
帮助的人:413万
展开全部
解:设L与线段AB的交点为(x,y),
由y=x+3 易得 A(-3,0),B(0,3)
根据题意有
3×(-x):3×y=2:1或1:2;(交点横坐标x是负值,故用-x来作为其长度)
可得x:y=-2或-1/2
那么L的方程式为
y=-x/2或y=-2x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
278171620
2010-07-28 · 超过29用户采纳过TA的回答
知道答主
回答量:120
采纳率:0%
帮助的人:103万
展开全部
△AOC与△BOC面积比为2:1
过o点做AB的垂线,为这两个三角形共同的高,所以AC:BC=2:1
y=x+3与x轴、y轴交于A、B两点,A坐标为(-3,0)B坐标为(0,3)
所以:C点坐标为(-1,2)。所以:L的解析式为:y=-2x
另一种情况为:△AOC与△BOC面积比为1:2

同理得:L的解析式为:y=-x/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友3a90c76
2010-07-30 · TA获得超过605个赞
知道答主
回答量:373
采纳率:0%
帮助的人:132万
展开全部
△AOC与△BOC面积比为2:1
过o点做AB的垂线,为这两个三角形共同的高,所以AC:BC=2:1
y=x+3与x轴、y轴交于A、B两点,A坐标为(-3,0)B坐标为(0,3)
所以:C点坐标为(-1,2)。所以:L的解析式为:y=-2x
另一种情况为:△AOC与△BOC面积比为1:2

同理得:L的解析式为:y=-x/2

过点C,分别作CD垂直x轴,CE垂直y轴
面积分为1:2,则
若S△BOC:S△AOC=1:2
当y=0时,得0=x+3,解得x=-3,所以点B的坐标为(-3,0)
当x=0时,y=x+3=0+3=3,所以点B的坐标为(3,3)
S△AOB=AO*BO*0.5=IxI*IyI*(1/2)=3*3*0.5=4.5
则S△AOC=AO*CD*0.5=3*CD*0.5=1.5CD=4.5/(1+2)*2=3,
S△BOC=BO*CE*0.5=3*CE*0.5=1.5CE=4.5/(1+2)*1=1.5
所以CD=2,CE=1
所以点C的坐标为(-1,2)
直线L过原点,设直线L的解析式为y=kx
将x=-1,y=2代入y=kx
得,2=-1k,解得k=-2
所以直线L的解析式为y=-2x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式