高一必修四 第三章 三角恒等变换 所有公式分类 以及巧记方法
高一必修四第三章三角恒等变换所有公式分类以及巧记方法!重要的是巧记方法!!!有巧记方法的额外加高分!巧记方法有几个算几个都行!注意!!!拒绝复制!!要求短小精炼,面面俱到...
高一必修四 第三章 三角恒等变换 所有公式分类 以及巧记方法!
重要的是巧记方法!!! 有巧记方法的 额外加高分! 巧记方法有几个算几个都行!
注意!!!拒绝复制!!
要求短小精炼,面面俱到!
特别好的可加分! 如果是教案什么的 Word文档等 可发邮箱
hh623698254@qq.com
qq:623698254
三角函数特殊值的巧记方法如果有的连同一起发,额外加50分!
特别好的可继续加分 - -!
记得 是三角恒等变换 所有公式 所有!!
不全面不给分的 - -! 展开
重要的是巧记方法!!! 有巧记方法的 额外加高分! 巧记方法有几个算几个都行!
注意!!!拒绝复制!!
要求短小精炼,面面俱到!
特别好的可加分! 如果是教案什么的 Word文档等 可发邮箱
hh623698254@qq.com
qq:623698254
三角函数特殊值的巧记方法如果有的连同一起发,额外加50分!
特别好的可继续加分 - -!
记得 是三角恒等变换 所有公式 所有!!
不全面不给分的 - -! 展开
展开全部
两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式:
半角的正弦、余弦和正切公式(降幂扩角公式)
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α+β)=sinα·cosβ+cosα·sinβ
sin(α-β)=sinα·cosβ-cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式:
半角的正弦、余弦和正切公式(降幂扩角公式)
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询