换底公式是什么 高一函数
2个回答
展开全部
换底公式是一个比较重要的公式,在很多对数的计算中都要使用,也是高中数学的重点。 log(a)(b)表示以a为底的b的对数。 所谓的换底公式就是 log(a)(b)=log(n)(b)/log(n)(a) 换底公式的推导过程: 若有对数log(a)(b)设a=n^x,b=n^y 则 log(a)(b)=log(n^x)(n^y) 根据 对数的基本公式 log(a)(M^n)=nloga(M) 和 基本公式log(a^n)M=1/n×log(a) M 易得 log(n^x)(n^y)=y/x 由 a=n^x,b=n^y 可得 x=log(n)(a),y=log(n)(b) 则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a) 得证:log(a)(b)=log(n)(b)/log(n)(a) 例子:log(a)(c)^log(c)(a)=log(c)(a)/log(c)(c)^log(c)(a)= 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询