怎样求函数的单调性,最大值,最小值及其几何意义

 我来答
维护健康123
2016-04-12 · TA获得超过1059个赞
知道小有建树答主
回答量:1203
采纳率:0%
帮助的人:366万
展开全部
先求函数定义域,再求函数的导数,在令导数等于零,求出驻点,再用驻点把定义域分
成几个区间,再在每个区间内讨论导函数的符号,若为正,则函数在该区间单调增,若为负,则函数在该区间单调减。函数由增变到间时,则在驻点有极大值,函数由减变为增时,则在驻点有极小值,再和函数在两端点处的函数值相比较,最大者就是最大值,最小者就是最小值,函数单调增的几何意义是曲线呈上升趋势,反之是下降趋势。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式