关于函数导数问题

确定a、b的值,使函数f(x)=(1-cosax)/x,x<00,x=0ln(b+x^2)/x,x>0在(-∞+∞)内处处可导f(x)是分段函数请各位老师写出详细的解答,... 确定a、b的值,使函数f(x)=(1-cosax)/x,x<0
0 , x=0
ln(b+x^2)/x, x>0
在(-∞ +∞)内处处可导

f(x)是分段函数

请各位老师写出详细的解答,谢谢。
展开
 我来答
fkdwn
2010-07-29 · TA获得超过1.3万个赞
知道大有可为答主
回答量:2583
采纳率:0%
帮助的人:1428万
展开全部
首先,要使f(x)在(-∞ +∞)内处处可导,须f(x)在(-∞ +∞)内连续
即须f(x)在x=0处连续
即lim(x->0-)f(x)=lim(x->0+)f(x)=f(0)
lim(x->0-)f(x)=lim(x->0-)[(1-cosax)/x]=lim(x->0-)asinax=0无论a为何值恒成立
lim(x->0+)f(x)=lim(x->0+)ln(b+x^2)/x=0,则
lim(x->0+)ln(b+x^2)=0,且lim(x->0+)[2x/(b+x^2)]=0
即b=1

其次要使f(x)在(-∞ +∞)内处处可导,只需要使f(x)在x=0处可导
即f'(0-)=f'(0+)
∵f'(0-)=d[(1-cosax)/x]/dx |(x=0)=lim(x->0)[axsinax-(1-cosax)]/x^2
=lim(x->0)[asinax+(a^2)xcosax-asinax]/2x
=lim(x->0)[(a^2)cosax-(a^3)xsinax]/2
=(a^2)/2
f'(0+)=d[ln(1+x^2)/x]/dx|(x=0)=lim(x->0)[2(x^2)/(1+x^2)-ln(1+x^2)]/x^2
=lim(x->0)[2(x^2)-(1+x^2)ln(1+x^2)]/[(x^2)(1+x^2)]
=lim(x->0)[4x-2xln(1+x^2)-2x]/(2x+4x^3)
=lim(x->0)[1-ln(1+x^2)]/(1+2x^2)
=1
∴(a^2)/2=1
a=±√2

综上可得
a=±√2, b=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式